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SPACE OF CONTINUOUS MAPS AND KN-NETWORKS
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Abstract. The aim of this paper is to establish conditions for which the space C(X,Y)
of continuous maps from space X into space Y has a point-countable kn-network. Also

some properties related to point-countable covers of C(X,Y) are proved.

1. Introduction

Since D. Burke, G.Gruenhage, E. Michael and Y. Tanaka [1,2,4] established the fun-
damental theory on point-countable covers in generalized metric spaces, many toplogists
have investigated the p()in‘r—(-(nm't able covers with various characters, including k-networks,
cs*-networks, p-k-networks,... were introduced and investigated. Recently, the above prob-
lem are considered in topological spaces. In this paper, we shall consider some conditions
for spaces C(X,Y) having a point-countable kn-networks and consider some properties of
C'(X,Y) related to point-countable covers.

We assume that all spaces are regular and Ty. We begin with some basis definitions.

Let X be a space and P a cover of X. For every finite 7 C P, we denote by UF
(respectively NF ) the set U{P : P € F} (respectively N{P:PeF}).

1.1. Definition
(1) P is a k-network if, whenever K C U with K compact and U open inX, then

KcUuFcU

for some finite F C P.

A compact (respectively open) k-network is a k-network consisting of compact sub-
sets (respectively open subsets).

(2) P is a network if for every z € X and U open in X such that x € U, then

reUFelU

for some finite 7 C P.
(3) P is kn-network if , whenever K C U with K compact and U open in X, then

Kc(UF)°CcuUFclU

for some finite F C P.
(4) P is called point-countable if for every x € X, the set {P € P:x € P} is a

most countable.
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Definition 1.2. Let X be a space and P = U{P, : & € X} be a family of subsets of X.
satistying following coditions for every ¢ € X,

(1) x € P for all P € P,:

2Q)IU,VeP,, then WcCcUNYV for some W e P,.
P is called a weak base for X | if a subset G of X is open in X if and only if for cach r € G
there exists P € P, such that P c G.

A space X is a gf-countable space if X has a weak base P such that P, is countable

for every 2 € X.

Definition 1.3. A space X is determined by a cover P. or P determined X if UcC X is
open in X if and only if U N P is open in P for every P € P,

If P is a collection of sets, then P* (respectively P.) denotes {UF : F C P, F finite}
(respectively{NF : FF C P, F finite}).

2. The main results

Let X and Y be spaces. Throught this paper by U we denote the topological
base of Y and C(X,Y) the space of continuous maps from X to Y equipped with the
compact-open topology.

If K€ X and U C Y then we denote

(K,U)={feC(X,Y): f(K)C U)}.

Theorem 2.1. If X has a countable, compact k-network and Y has a point-countable
hase, then

1) C(X,Y) has a point-countable kn-network:

2) C'(X,Y) has a point-countable base:

3) C(X,Y) is first countable.

Proof 1) Let P be a countable, compact k-network for X, U a point-conntable base for Y
and

V= [{(G,U):Ce P Ueii).

We first prove that V is cover of C(X,Y). Let f e C(X,Y) and & € X. There exists
U € U such that f(x) e U.

By the continuity of f, f~3(U) is open in X. Since {z} Cc fYU) and P is a
k-network, it follows that there exists P € P such that

{zr}cPcf1U).

This means that f(P) ¢ U and hence fe(PU)eV. Thus Vis a cover of C(X, Y) and

S0 1s V..
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We now show that V, is a kn-network. Suppose K C W, where K is compact and
W is open in C(X,Y). If f € K, then there exists the neighborhood V of f in C(X,Y)

such that
k
ﬂ (K., U;)

where K is compact in X and U; € Y for ¢ =1,..,k.
Let f eV, K, C f~}(U;) for i =1, ..., k. Since K, is compact and P is a k-network,
there exists Py, Pai, ..., Pm,i € P such that

K; C U Pi;C f7Y(U) for i=1,..,k.

j=1
This yields
F(K:) C f(U BAclU; for i=1,..k

and
my

fe(lPuti)c (K, Ui) for i=1,..,k

Let
and

Then P, € V, Py € V, and
fePrcn(K,U)=VCW.

Since K is compact and f’f is open, there exist fi, fa,..., fn € K such that

Sincepﬂ € V, fori = 1,..n, V, is a kn-network for C(X,Y).
It remains to show that V, is point-countable. It is sufficient to prove that V is
point-coutable. Let f € C(X,Y), G € P* and

Fo={Ucl: fe(GU))

Then Fe C V . If Fg is uncountable, then there exists a uncountable subset U’ of U such
that
fe(GU) forevery Uecl.
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Hence, it © € G, then f(r) € U for every U € U'. Since U is point-countable, we have
a contradiction. It follows that F¢ is countable. Since P is countable, P* is countable.
This yields the set {Fg : G € P*} is countable and hence f is in at most countable many
elements of V. Thus, V is point- countable.

2) Since V, is a open kn-network , V, is a base for C(X,Y). Thus V, is a point-
countable base for C'(X,Y).

3) Let f € C(X,Y) and

Vi={WeV,:feW}.

Since V., is point-countable, Vy is countable. Because V, is a open kn-network, we conclude
that V¢ is a neighborhood base at f in C(X,Y). Hence C(X,Y) is a first countable space.

Remark 2.2. It is easy to show that the cover P of any space X is a point-countable base
if and only if P is a point-countable, open kn-network. But a space with a point-coutable

kn-network can not be a space with a point-countable base [8].
L

Corollary 2.3 If X has a countable, compact k-network and Y has the point-countable
kn-network G such that if y € U with U open in X, then

ye(UF)°CUFCU and yenF

for some finite 7 C G. In particular C'(X,Y) has a point-countable kn-network.

Proof. By Theorem 2.1, it is sufficient to show that ¥ has a point-countable base.
For every y € Y, put
g,,:{GEQZUEG},

G_,, = {G” HG € (gy)*}

and

We will show that G is point-countable base for ¥. Let y €Y and V be a neighborhood
of y in Y. Then, there is a finite subset F of G such that

ye(UF)CUFCV and yenF.
Put G = UF. We have G € (G,)* and
yeGecGcV

By G° € G. G is a base of Y.
Since G is point-countable. G, is countable. This vields (G,)* is countable and so is

G,. Hence, G is point-countable.
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Lemma 2.4. If X is determined by a cover P and P is a refinement of P’, then X Is

determined by P’.

Proof. Let U ¢ X such that U N P’ is open in P’ for every P’ € P’'. We show that U is
open in X. Let P € P. Then, since P is a refinement of P’, there is a P’ € P’ such that
P c P'. Since UN P’ in P’ is open, there exists G open in X such that UN P =GN P".
Hence

UNP=UNPNP)=UNP)NP=(GNP)NP=GNP.

It follows that U N P is open in P for every P € P. Since X is determined by P, U is
open in X. Thus X is determined by P’.

Theorem 2.5. Let X be a locally compact space, P = {P C X : Pis open andPcompact in
X} and V= {(P,U): P € P,U €U}. Then

1) C(X,Y) is determined by V;

2) V, is a kn-network for C(X,Y);

3) If X is a second countable and Y has a point-countable base', then V,V, are
point-countable and C(X,Y") is a countable gf-space.

Proof.
1) Put
V' ={(P,U): PeP,U€elU}.

It is obvious that V' is a refinement of V and (P, U) open in C(X,Y) for every (P,U) € V'.
Hence, by Lemma 2.4, it is sufficient to show that C(X,Y’) is determined by V' Let W
be an open subset in C'(X,Y). Then W NV is open in V for every V € V'. Conversly,
assume that W € C(X,Y) such that W NV is open in V for every V € V'. Then there
exists an open subset G in C(X,Y) such that

GNV=wnV.

But V is open in C(X,Y), since V € V. Hence GNV open in C(X,Y). Since V' is a
cover of C(X,Y), we get

w=Jwnv)= [ (@GnV).

vevy’ veV’

Thus W is open in C(X,Y) and hence, C(X,Y) is determined by V'.
2) Let K be a compact subset of C(X,Y) and let W be an open subset of C(X,Y)
such that K C W. Then, for every f € K , there exists a neighborhood V" of f in C(X,Y)

such that
m

V=K, U:) CW,
i=1
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where K, is compact in X and U; € U for i = 1,...,m. Since X is regular, locally compact
and K; is compact, there exists V; € P such that

K.cV,cV,c f7Y(Uy) for i=1,2,.. m.

This yields

fe Vi) c Ve, Us) € () (Ks, Us).

1=1 =1 =]

Put . -
Py =(\(UsV:) and P;=(\(ViUs).

i=1 i=1

Then Py € V,, P} is open in C(X,Y) and P¢ C Py. By the compactness of K, there
exists fi, fa, ..., fn € K such that

KCO%CU&CW (1)

i=1 i=1

As P}, is open for every i = 1, .., n, we have

K C (UPfi) cJPncw
i=1 i=1
Hence, V, is a kn-network for C'(X,Y).
3) Let B be a countable base of X and let z € B with B € B. Since X is locally
compact and regular, there is a P € P such that

z€PcPcCB.

Hence, we can assume that P is countable. By a similar argument as the proof of Theorem
2.1, we conclude that V is point-countable and hence is so V,.

We now show that (V'), is a weak base for C(X,Y). For every f € C(X,Y) by Vi
we denote the set {Q € (V'), : f € Q}. Then, we have

V). =u{(V)s: feC(X,Y)})

It follows from (1) that (V). is an open k-network for C(X,Y’). Since (V') is a k-network
and it is closed under finite intersections, V} is a network and it is closed under finite
intersections. Let W be a subset of C'(X,Y) such that for every f € W,Q C W for some
Q € V. From Q € V}, we can suppose
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where P, € P.U, € U for every i = 1,...,n. By the compactness of P, and the openning of
U, for i = 1,...,n. Q is open in C'(X,Y) and hence, so is W. This yields (V') is a weak
basc for C(X,Y). Since (V). is point-countable, (V'). is point-countable. Hence, V} is
countable for every f € C(X,Y). Thus C(X,Y) is a countable gf-space.

References

1. D.K. Burke and E. Michael, On a theorem of V.V Flippov, Isarel J. Math. 11(1972),394-
397.

2. D.K. Burke and E. Michael, On certain poin-countable covers, Pacific Journal of
Math. 64(1)(1976),79-92.

3. H. Chen. Compact-covering maps and k-networks, preprint (2003).

4. G. Gruenhage, E. Michael and Y. Tanaka, Spaces determined by point-countable
covers, Pacific Journal of Math. 113(2)(1984) 303-332.

5. P.O’, Meara, On paracompactness in function spaces with the compact-open topol-
ogy, Proc. Amer Math. Soc, 29(1971), 183-189.

G. Y. Tanaka, Point-countable covers and k-networks, Topology-proc. 12(1987),327-
349.

7. Y. Tanaka, Theory of k-networks II, Q and A in General Topology,19(2001), 27-46.

8. P.Yan and S. Lin, Point-countable k-networks, cs*-network and «a4-spaces, Topology
Proc, 24(1999), 345-354.

1



