ON THE WEAK LAW OF LARGE NUMBERS FOR BLOCKWISE INDEPENDENT RANDOM VARIABLES

Nguyen Van Quang, Le Van Thanh
Department of Mathematics, Vinh University

Abstract

In this paper we give conditions of the weak law of large numbers for sequences of random variables which are blockwise independent. Some well-known results are extended.

1. Introduction and notations

In [2] and [5] it was shown that some properties of independent sequences of random variables can be applied to the sequences consisting of independent blocks. Particularly, it was proved in [5] that if $\left(X_{i}\right)_{i=1}^{\infty}$ is a independent sequence in blocks $\left[2^{k}, 2^{k+1}\right), E X_{i}=$ $0\left(i \in N^{*}\right)$, then it satisfies the Kolmogorov's theorem: the condition $\sum_{i=1}^{\infty}\left(E X_{i}^{2}\right) i^{-2}<\infty$ implies the strong law of large numbers (s.l.l.n.), i.e.,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} X_{i}=0 \text { a.s. }
$$

In [3], Gaposhkin found down sufficient conditions in which the s.l.1.n. is fulfilled for a blockwise independent sequence with arbitrary blocks. The strong law of large numbers for two-dimensional arrays of blockwise independent random variables was studied in [7].

In recent years, the weak law of large numbers has been theme of studying of many mathematicians. The aim of this paper is to establish the sufficient conditions in which the weak law of large numbers is fulfilled for blockwise independent sequences with arbitrary blocks. Furthermore, we extend some well-known results in this area.

Let $1=\omega(1)<\omega(2)<\cdots<\omega(n)<\cdots$ be a sequence of positive integers and $\Delta_{k}=[\omega(k), \omega(k+1))$. We say that the sequence $\left\{X_{i}, i \in N^{*}\right\}$ of random variables is blockwise independent (blockwise orthogonal) with respect to blocks Δ_{k}, if, for every fix k, the sequence $\left\{X_{i}, i \in \Delta_{k}\right\}$ is independent (orthogonal). Denote

$$
\begin{aligned}
N_{m} & =\min \left\{N \mid \omega(N) \geq 2^{m}\right\}, \quad m=0,1, \ldots, \\
s_{m} & =N_{m+1}-N_{m}+1 \\
\varphi(i) & =s_{m} \text { if } i \in\left[2^{m}, 2^{m+1}\right)
\end{aligned}
$$

Let $\Delta^{(m)}=\left[2^{m}, 2^{m+1}\right), \Delta_{k}^{(m)}=\Delta_{k} \cap \Delta^{(m)}$ for $m \geq 0$ and $k \geq 1, \delta_{k}^{(m)}=\sum_{k \in \Delta_{k}^{(m)}} X_{k}$. For each $m \geq 1$, we assume $\Delta_{k}^{(m)} \neq \emptyset$ for $p_{m} \leqslant k \leqslant q_{m}$. Since $\omega\left(N_{m}-1\right)<2^{m}, \omega\left(N_{m}\right) \geq$ $2^{m}, \omega\left(N_{m+1}\right) \geq 2^{m+1}$ for each $m \geq 1$, the number of nonempty blocks $\Delta_{k}^{(m)}$ is not larger than $s_{m}=N_{m+1}-N_{m}+1$.

2. Lemmas

To prove the main theorem
Lemma 2.1. (Doob's Inequality) If $\left\{X_{i}, \mathcal{F}_{i}\right\}_{i=1}^{N}$ is a martingale difference, $E|X|^{p}<$ $\infty(1<p<\infty)$, then

$$
E\left|\max _{k \leqslant N} \sum_{i=1}^{k} X_{i}\right|^{p} \leqslant\left(\frac{p}{p-1}\right)^{p} E\left|\sum_{i=1}^{N} X_{i}\right|^{p} .
$$

Lemma 2.2. If $q>1$ and $\left\{x_{n}, n \geq 0\right\}$ is a sequence of constants such that $\lim _{n \rightarrow \infty} x_{n}=0$, then

$$
\lim _{n \rightarrow \infty} q^{-n} \sum_{k=0}^{n} q^{k+1} x_{k}=0
$$

Proof. Let $s=q+\sum_{i=0}^{\infty} q^{-i}$. For any $\epsilon>0$, there exists k_{0} such that $\left|x_{k}\right|<\frac{\epsilon}{2 s}$ for all $k \geq k_{0}$. Since $\lim _{n \rightarrow \infty} q^{-n}=0$, so, there exists $n_{0} \geq k_{0}$ such that for all $n \geq n_{0}$, we have

$$
\left|q^{-n} \sum_{k=0}^{k_{0}} q^{k+1} x_{k}\right|<\frac{\epsilon}{2}
$$

It follows that

$$
\begin{aligned}
\left|q^{-n} \sum_{k=0}^{n} q^{n} x_{k}\right| & \leqslant\left|q^{-n} \sum_{k=0}^{k_{0}} q^{k+1} x_{k}\right|+\left|q^{-n} \sum_{k_{0}+1}^{n} q^{k+1} x_{k}\right| \\
& \leqslant \frac{\epsilon}{2}+\frac{\epsilon}{2 s}\left(q+1+\frac{1}{q}+\cdots\right) \\
& =\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon \text { for all } n \geq n_{0} .
\end{aligned}
$$

This completes the proof.

3. Main results

With the notations and lemmas listed above, main results may now be established. Theorem 3.1. Assumme that $\left\{X_{i}\right\}_{i=1}^{\infty}$ is a blockwise independent sequence such that $E X_{i}=0, E X_{i}^{2}=c_{i}^{2}$, and let $\lim _{n \rightarrow \infty} \frac{1}{2^{2 n+2}} \sum_{i=2^{n}}^{2^{n+1}-1} c_{i}^{2} \varphi(i)=0$, then

$$
\begin{equation*}
\frac{\sum_{i=1}^{2^{m}-1} X_{i}}{2^{m}} \xrightarrow{\mathbb{P}} 0 \text { as } m \longrightarrow \infty, \tag{3.1}
\end{equation*}
$$

moreover

$$
\begin{equation*}
\frac{\sum_{l=1}^{m} \sum_{k=p_{l}}^{q_{l}}\left|\delta_{k}^{(m)}\right|}{2^{m}} \xrightarrow{\mathbb{P}} 0 \text { as } m \longrightarrow \infty . \tag{3.2}
\end{equation*}
$$

Prorf.
Let us first estimate the norm in L^{2}. Put

$$
\sigma_{m}=2^{-m-1} \sum_{k=2^{m}}^{2^{m+1}-1} X_{k}, \quad \sigma_{m}^{\prime}=2^{-m-1} \sum_{k=p_{m}}^{q_{m}}\left|\delta_{k}^{(m)}\right|
$$

Me hav:

$$
\left|\sigma_{m}\right| \leqslant 2^{-m-1} \sum_{k=p_{m}}^{q_{m}}\left|\delta_{k}^{(m)}\right|=\sigma_{m}^{\prime}
$$

Iote that every blockwise independent sequence, is a blockwise orthogonal sequence poridel $\lesssim X_{i}=0$, therefore

$$
\begin{aligned}
& \left\|\sigma_{m}\right\|^{2} \leqslant\left\|\sigma_{m}^{\prime}\right\|^{2} \leqslant 2^{-2 m-2} s_{m} \sum_{k=p_{m}}^{q_{m}}\left\|\delta_{k}^{(m)}\right\|^{2} \\
& \leqslant 2^{-2 m-2} s_{m} \sum_{k=2^{m}}^{2^{m+1}-1} c_{k}^{2}=2^{-2 m-2} \sum_{k=2^{m}}^{2^{m+1}-1} c_{k}^{2} \varphi(i) \longrightarrow 0 \quad(m \longrightarrow \infty)
\end{aligned}
$$

which yeds

$$
\lim _{m \rightarrow \infty}\left\|\sigma_{m}\right\|=0, \lim _{m \rightarrow \infty}\left\|\sigma_{m}^{\prime}\right\|=0
$$

Ontheother hand

$$
\left\|2^{-m} \sum_{k=1}^{2^{m}-1} X_{k}\right\|=\left\|2^{-m} \sum_{k=0}^{m-1} 2^{k+1} \sigma_{k}\right\| \leqslant 2^{-m} \sum_{k=0}^{m-1} 2^{k+1}\left\|\sigma_{k}\right\|
$$

Tsng the the statement $\lim _{m \rightarrow \infty}\left\|\sigma_{m}^{\prime}\right\|=0$, Lemma 2.2 and Markov's inequality, we reah treclaim (3.1).
n the same way, using the statement $\lim _{m \rightarrow \infty}\left\|\sigma_{m}^{\prime}\right\|=0$, Lemma 2.2 and Markov's inquait, we prove (3.2)
.he following theorem is a extension of the Markov's w.l.1.n.
Tleoren 3.2. If $\left\{X_{i}\right\}_{i=1}^{\infty}$ is a blockwise independent sequence, $E X_{i}=0, E X_{i}^{2}=c_{i}^{2}$, inn tie sondition

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{2^{2 n+2}} \sum_{i=2^{n}}^{2^{n+1}-1} c_{i}^{2} \varphi(i)=0 \tag{3.3}
\end{equation*}
$$

inples v.l.1.n

$$
\begin{equation*}
\frac{\sum_{i=1}^{n} X_{i}}{n} \xrightarrow{\mathbb{P}} 0 \quad \text { as } \quad n \longrightarrow \infty \tag{3.4}
\end{equation*}
$$

Proof. For $\Delta_{k}^{(m)} \neq \emptyset$, we set

$$
\begin{aligned}
r_{k}^{(m)} & =\min \left\{r: r \in \Delta_{k}^{(m)}\right\} ; \\
r_{k}^{\prime(m)} & =\max \left\{r: r \in \Delta_{k}^{(m)}\right\} ; \\
\gamma_{k}^{(m)} & =\sup _{n \in \Delta_{k}^{(m)}}\left|\sum_{i=r_{k}^{(m)}}^{n} X_{i}\right| ; \\
\gamma_{m} & =2^{-m-1} \sup _{p_{m} \leqslant k \leqslant q_{m}} \gamma_{k}^{(m)} .
\end{aligned}
$$

Firstly, we will prove that

$$
\begin{equation*}
\gamma_{m} \xrightarrow{\mathbb{P}} 0 \quad \text { as } \quad m \longrightarrow \infty \tag{:.5}
\end{equation*}
$$

Indeed, using Lemma 2.1 for the martingale

$$
S_{n}=\sum_{i=r_{k}^{(m)}}^{n} X_{i}\left(r_{k}^{(m)} \leqslant n \leqslant r_{k}^{\prime(m)}\right)
$$

we have

$$
\left\|\gamma_{k}^{(m)}\right\|^{2} \leqslant 4\left\|\sum_{i \in \Delta_{k}^{m}} X_{i}\right\|^{2}=4 \sum_{i \in \Delta_{k}^{m}}\left\|X_{i}\right\|^{2}=4 \sum_{i \in \Delta_{k}^{m}} c_{i}^{2} .
$$

Consequently,

$$
\left\|\gamma_{m}\right\|^{2} \leqslant 2^{-2 m-2} \sum_{k=p_{m}}^{q_{m}}\left\|\gamma_{k}^{(m)}\right\| \leqslant 4 \sum_{i=2^{m}}^{2^{m+1}-1} \frac{c_{i}^{2}}{i^{2}} \leqslant 2^{-2 m-2} \sum_{i=2^{m}}^{2^{m+1}-1} c_{i}^{2} \longrightarrow 0 \quad(r,-\infty)
$$

Using the Markov's inequality, we get

$$
\gamma_{m} \xrightarrow{\mathbb{P}} 0 \quad \text { as } \quad m \longrightarrow \infty .
$$

Now assume that $n \in \Delta_{k}^{(m)}$. Using (3.5) and Theorem 3.1 we obtain

$$
\begin{aligned}
0 & \leqslant\left|\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}\right| \\
& \leqslant\left|\frac{X_{1}+X_{2}+\cdots+X_{2^{m}-1}}{2^{m}}\right|+\left|\frac{X_{2^{m}}+X_{2^{m}+1}+\cdots+X_{n}}{2^{m}}\right| \\
& \leqslant\left|\frac{X_{1}+X_{2}+\cdots+X_{2^{m}-1}}{2^{m}}\right|+\frac{\sum_{k=p_{m}}^{q_{m}}\left|\delta_{k}^{(m)}\right|+2^{m+1} \gamma_{m}}{2^{m}} \\
& =\left|\frac{X_{1}+X_{2}+\cdots+X_{2^{m}-1}}{2^{m}}\right|+2 \sigma_{m}^{\prime}+2 \gamma_{m} \xrightarrow{\mathbb{P}} 0 \text { as } n \longrightarrow \infty
\end{aligned}
$$

(Because $m \rightarrow \infty$ as $n \rightarrow \infty$.)
This yields (3.4) and the proof is completed
Corollary 3.3. If $\left\{X_{i}\right\}_{i=1}^{\infty}$ is a blockwise independent sequence, $E X_{i}=0, E X^{2}=c_{i}^{2}$ ind $\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{i=1}^{n} c_{i}^{2} \varphi(i)=0$, then

$$
\frac{\sum_{i=1}^{n} X_{i}}{n} \xrightarrow{\mathbb{P}} 0 \quad \text { as } \quad n \longrightarrow \infty
$$

Proof. Clearly, from the condition

$$
\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{i=1}^{n} c_{i}^{2} \varphi(i)=0
$$

follows

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{2 n+2}} \sum_{i=2^{n}}^{2^{n+1}-1} c_{i}^{2} \varphi(i)=0
$$

which completes the proof.
Corollary 3.4. If $\omega(k)=2^{k}$, then for a Δ_{k}-independent sequence $\left(X_{i}\right)$ with $E X_{i}=0$ and $\lim _{n \rightarrow \infty} \frac{1}{2^{2 n+2}} \sum_{i=2^{n}}^{2^{n+1}-1} c_{i}^{2}=0$, we have

$$
\frac{\sum_{i=1}^{n} X_{i}}{n} \xrightarrow{\mathbb{P}} 0 \quad \text { as } \quad n \longrightarrow \infty .
$$

Proof. It is easy to see that the case $\varphi(i)=1$ and the statement of Corollary 2.3. leads to $\lim _{n \rightarrow \infty} \frac{1}{2^{2 n+2}} \sum_{i=2^{n}}^{2^{n+1}-1} c_{i}^{2} \varphi(i)=0$.

Similarly to corollaries 2.3 and 2.4 , we get
Corollary 3.5. (Markov's weak law of large numbers) If $\left\{X_{i}\right\}_{i=1}^{\infty}$ is a independent sequence of random variables with $E X_{i}=0, E X_{i}^{2}=c_{i}^{2}$ and $\lim _{n \rightarrow \infty} \frac{1}{n^{2}} \sum_{i=1}^{n} c_{i}^{2}=0$, then

$$
\frac{\sum_{i=1}^{n} X_{i}}{n} \xrightarrow{\mathbb{P}} 0 \quad \text { as } \quad n \longrightarrow \infty
$$

References

1. A. Adler, A Rosalsky, A.I. Volodin, Weak laws with random indices for arrays of random elements in Rademacher type p Banach spaces, J. Theor. Probab., (1997) pp. 605-623.
2. V. F. Gaposhkin, On series of blockwise independent and blockwise orthogonal systems, Matematika, 5(1990), pp. 12-18. (In Russian.)
3. V. F. Gaposhkin, On the strong law of large numbers for blockwise independent and blockwise orthogonal random variables, Siam Theory of Probability and its Applications 39(1995), pp. 677-684.
4. D. H. Hong, M. Ordonez Cabrera, S. H. Sung, and A.I. Volodin, On the weak law for randomly nidexed partial sums for arrays of random elements in martingale type p Banach spaces, Statist. Probab. Lett., 46(2000) pp.177-185.
5. F. Moricz, Strong limit theorems for blockwise m-independent and blockwise quasiorthogonal sequences of random variables, Proc. Amer. Math. Soc., 101(1987), pp. 709-715.
6. S. H. Sung, Weak law numbers for arrays, Statist. Probab. Lett. 38(1998) pp. 101-105.
7. L.V. Thanh and N.V. Quang, On the strong law of large numbers for two-dimensional arrays of blockwise independent and blockwise orthogonal randorn variables, To appear in Acta Math. Vietnamica.
