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A b s t r a c t .  In this paper, we apply the mesh-independence principle to differential alge

braic equations.

1. I n t r o d u c t io n

It was shown by the mesh-independence principle that if the Newton’s method is used 
to analyse a nonlinear equation between some Banach spaces and some finite-dimensional 
discretization of tha t equation then the discretized process is asymptotically the same as 
that for the original iteration. As the result, the number of iterations steps needed for 
two processes to converge within a given tolerance is basically the same [1 ]. Consider the 
following equation:

F{z) = 0 (1 .1 )

where, F  is a lionlienar operator between Banach spaces A , Â .  The Newton’s method is 
defined as follow:

Z n + 1  =  z n  -  [_F' (zn ) ] - 1 F ( z n ),  n  =  0 ,  1 , 2 , . . .  ( 1 . 2 )

Under certain conditions, equation ( 1 .2) yields a sequence converging quadra.tica.lly to a 
solution z* of equation (1 .1 ). Normally, the formal procedure defined by equation ( 1 .2) is 
not suitable ill infinite-dimensional spaces. Thus, in practice equation (1.1) is replaced by 
a family of discretized equations:

$h (O  =  0 (1.3)

where h is some real number and $/, is a nonlinear operator between finite-dimensional 
spaces Ah, Ah- It we define Ah to be the bounded linear operator Ah : A  —> Ah, then 
equation (1.3), under some appropriate assumprions, have solutions which are the limit 
of the Newton sequence applied to equation (1.3). These solutions are obtained as follows:

c  =  +  0(h?)

and are started  at A hZ0 that is:

t i  = A hz0 Cn+1 n = 0 ,1 ,2 ,. . .  (1.4)

T yp eset by ^4Ạ/f*S-TgX
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Observations in many computations indicates tha t for a sufficiently small h there is at most 
a difference of 1 between the number of steps needed for the two processes of equations
(1.2) and (1.4) to converge within a given tolerance £ >  0. T ha t is one aspect of the mesh- 
independence principle of Newton’s method. Another aspect is that, if discretization 
satisfied certain conditions then:

Ù - C n  =  -  z*) +  0 { h * )

c + l  - ( n =  A f c ( Z n + 1 -  zn) + ° ^ v) Í 1 -5 )

$>h{ íhn) = ằ hF{zn) + 0 { h V )

The aim of this paper is to apply the m e s h - independence principle to differential alge
braic equations. The paper consists of two sections dicussing the Newton’s method for
continuous problems and the Newton’s method for discretized problems.

2. T h e  m e s h - in d e p e n d e c e  p r in c ip le

2.1. N e w to n  m e th o d  f o r  c o n t in u o u s  prob lem s

( x' (t)  = y(x( t ) , y( t ) )

y( t )=  / (x(t) .y(O)
2/(0) =  yo-,x(0) = x o

yo — f ( x 0,yo) 
t € [0, T] =  }

X  €  W"\y  €  Rn~m,g : Kr

(2 .1)

-> Rm, /  : R' R'

Without, loss of generally, we may assume tha t yo = 6\x0 — 0.
The norm in R s spaces on MpX<? spaces will be dentoted by the same symbol 

w h e r e  p , q , s £ N V x £  cụ, ss) : | | x | | o o  =  m a x , \ x { t ) \

z  := {z =  ( x , y ) e C ( J , R n) : I e C 1 ( J , n  x(0) =  ỡ, y(0) = Ớ}

I N I  : =  IM lo o  +  M o o

w  := C{J, Mn)

Hypotheses

Hi) (1.1) has a solution z* =  (x*,y*) e z  such that

G := ( g , f ) T £ C l (U(z*,p))

where
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ư := ư ự , p )  = { (x , y)  € K" : 3í e  J  : \x -  x*{t)\ <  p, \y -  y*(t)\ ^  p)

H o )  

ỗ < 1 .

dg
dx (*)

0 0 ,  X 
i (2)

d£
Ox (*)

F(z) : =

F  : z  —> W\ that is

£  := B ( z \ p )  = { z e  z  : \\z -  2*11 ^  p} \/z e B, Vh = (hl ì h2)T e z ,  

X -  g(x,y) 
y -  f (x,  y)

F'(z).h —
'h' - Ẽ l h ' - Ẽ i ĩ  
h[ -  i ' * 1 ■ Ị ' * 2

*> -  - 1 « .

a-’ic -  Vk) 
Vk -  f ( x k, yk) ( 2 .2 )

The Newton’s method for problem ( 1 .1 ):

Zk+I =  Zk -  [ i?/(z / ỉ) ] “ 1.F (z ít), w ith  / ỉ (fe) :=  (/ỉ,ịfc), / 4 fc)) r  

w  h ' ’ -  

^ 2°  “  tJt ■ h ' “  ' !/i )/'-i

By the Gronwall’s inequality and OI1 the hypotheses: Let g j  has continuos Lipschits 011 

the open domain u  the g  g  g  by z we have the following attraction theorem for 
Newton’s method described by (2.2)

T h e o re m  2 .1 . Suppose that (Hị) ,  (H2) are fulfilled. Then
1) Vz € z?,3 [F '( z ) ] -1 and | | [F '(^ ) ] -1|| s ' c

2) V z , i e  D : | |F ;(z) -  F ' (ã)  II <  / | | z - i | |

3) For Vz0 € £* := B[z*,r*],r* =
3C /

The Newton’s method converges to z* : (x y*)

2.2 N e w to n  m e th o d  f o r  d iscre tized  prob lem s  

With

T  ___
h : =  N Gh : =  =  t h ’ 1 = ° > Ởh = G ' A { 0 , T }

Zfc =  { c  =  (Co,  • . .  , c n ) ■ Co =  0 ,  Ci =  ( 6 ,  r / i ) ,  t,  €  7/, e  / Ỉ " - ' "  ( i  =  O J V ) }

/, =  m ax I & I +  m ax — — =  m ax If; I  +  I
qÌ i%n ' OS^JV-I h 0™ |i v Ki| 0<

h =  { n  =  (7 /0 ,... , r i N - i ) , V i  e /?'* ( t =  0 J V ) } ;  llr/llft =IỈ

m ax |£J -f n iax
N 0 < i< 7 V - i

Si

max
0<i<AT-i
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£k + l — £a- +  2 (gk.+ \ +  fjk)

fc =  0, TV — 1, £o =  0, 7/0 — 0 

£fc+i -  £k -  y(9k+ 1 + ỡfc) = 0

VC G z,, : $ fc (0  : =  

We have discretized equations

'f/fc+i—fc+1 — 0 Ẵ: — 0,7V — 1

£ =  0, 7, =  0

/I ^ yv" 1
£fc + l -  Ca: -  2 (ỡ*+l +  9k)

V k + l  f  (£>k+l 1 /̂A: +  l )  J/c=0

* ' / , ( 0  =  0

Co =  0,770 =  0

We obtain

K ( 0  -

Ỉ  _  I  _  I  0
h  2 <9£ ’ 2 ỠTỊ ’

4  . . .
ỠÍ ’ dr] 1 X

Cl
C'2

1 ÌÔPTV-I 1 1 1 d g N
’ "  ’ h 2 0£ ’ //. 2 ỠÉ ’ 2 dĩ) r N

Ỡ fN Ỡ ĩ N0 0 _  _±11 1 -----i i l
ÔC ỡry

when c,: =  (&,'/<), ^ j |  =  uVi) ,  =  -Jị{íuVi)-  We have Newton’s method

r o + i(A0 =  C M  + /iỉì(*o
l  & t i { k ) . t i ( k )  =  - * n M k ) )  

The Newton discretized sequence

-1

fc =  l ,7 V ,n  =  0 , 1 , 2 , .

(2.3)

C,';+1 = c  - [KiO] " -MC'D, n = 0,1,2,...

The discretization method to be considered here will be described by a family of triplets 
{$/!,!!h,r}.  The first, we consider [$ / , (0]  \  with

Co — Of 4-
0 1

1 -  5
27 x a  27 

and A : < A < — +
1 - Ỗ Ị3 ỉ -  Ỏ

and
c  : c  > max

A(1 -  S) -  2 7 ’ A(1 -  S) -  7 e2C°T

We consider
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Put

| I K ( C ) ] “ I N  c * ,  c * =  m ax{C .e2Cr, AC} 

z0 ': =  {z  e  z : X e  c2ụ , Rm), y e C \ J , / ? " - ”')}

I ^ l o o  ^  {Bo,  l l ^ l loo ^  Bị ,  llýll íC B 2 } ■

When: Vz £ Zn we have

r F ( z )

i ( i i )  — </(ar(íi), Ỉ/(Í1>) 
y ( h )  -  / ( * ơ i ) ,y ( f i ) )

à ( t N ) -  g ( x ( t N ) , y ( t N )) 
y ( t N ) -  f ( x N ,  Un )

H/i z (̂ 11 -2-2 7 • ■ - ) ) ĩ 2i • — £ (£ j)

$ h [ i M  =

—  /t —  -  ^ ỉỡ(® i,ĩ/i)  +  ớ(zo,yo)]
2/1 -

ZN — X N - l  1
h  2 L 

Ĩ/N — / ( % ,  :ợaO

Using finite incrrnent formular we find that

| |r (F (z ) )  -  ^ ( r U z ) ! !  ^  Cỏ /í,, Co : =  

with u — (ui, u2) E Zq

[9(x n , v n ) +  <y(^/v-i, y /v - i ) ]

Bn + a D  1 +  /3Z?2

“ í ^ l )  -  &ru l(*l) -  ^Ẹu2(tl)  
U2 Ự1 ) -  -  (Ị Ệ u 2(tl)

u[  ( í /v ) — ^§£-Ui(t,N ) — yfáj-U2 {t iv)  

UoỰn) -  — ^ - U o Ì Ì n )

We have

n ^ l t )  — ( u i ( t ỵ )  , u 2(t  1 ) , U i ( t 2) , U2( t o) , ■ . ■ , Ui(t.N ), u 2(t iv))

T ( F f ( z ) u ) - < V k ( n hz ) U hu

Uí(^ l)  — ị u l ( t l )  — ị ^ U i ự ỵ )  — 2 ị̂hTU2 ( t  2)
0 .  . . .  0 . . . . . . . . .  0

í ( T Ar) +  ự 9Q ~ l U l ( t N - l )  +  ị ĩ i í i t N - ị )  +  ự ° Q ~ l U 2 { t N - l )

~2~§x~U^ n ) — ị u i ( t N) -  ị (-̂ §Ẹ- UoỰ-n )
L O ....................... .  0 ............................ ; 0

r

■u
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We consider

\r(F!t)u) — ^ ( ĩ ỉ ^ ĩ l h u ị ị  ^  C{h, , C{ — Bo +  +  f3Bo 4- 2/IIi:lloo II a||-

By the Lipschitz continuity of

dg_ Ỡ0 Ô / 9f_
ỠX  ’ dy d x  ’ dy

with constant 1. we find tha t

I K ( C ) - 0 h ( C ) |  < 2 / | K - C I ,  h >  V ( X e B ( n hz*,p)

Consider a. Lipschitz uniform discretization {$/!, lift,Th} which is bounded, stable 
and cosistent, of order 1 . W ith the notation introduced in the previous section we may 
formulate the main result as the following lemma.

L em m a. Suppopo.se that for Cauchy problem (2.1), exists solution z* := (x* ,y*) € 
Z:G  := (q, f ) T continuously differentiability on the open domain Ư of z *, with

u  := U{z*,p) = {(x , y ) € Rn : 3 t e J  : \x -x*( t ) \  < p, lĩ/-  J/*(t)| < p}-

The differentiations of f  and g are satified:

dg f , 
i (2)

d g , \ 
7) sỉ 0,

d f f  \ 
i (2) dy

with: Ỗ < 1 , Vz € U(z*,p) .

with:<5 < l,vz <E U(z*,p) .  When the discrete family rih, r } , //. >  0 satisfying 
conditions which is Lipschitz bounded, stable, and consistent of order 1:

K ( C )  -  *'fc(C)ll <  2/IIC -  Cll =  L\\c-c\\h >  0 , vc ,c  € j5(nfcz*,p)

and

if: B* =

L = 21] \\uhz\\ <  ||z ||, /t > 0 ,  2 6  Zq Vz € Zo n  13
9

= B(z*, r*)  with radius r* — - j — we have

| | [ < ( n ^ ) ] “ II

| | r (F (z )  -  ^ ( r u o l l  ^  C£h, Vz € Zo n  B \  h > 0 

\ \ t ( F ' ( z ) u  -  ,2)1 1 ^ 1 1  <  Cĩh,  Vz € Zo n  B \  u  €  Zo, /1 >  0.

From this result we may formulate the mesh-indepenclence principle as follows.
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T h e o re m  2 .2 . With the hypotheses of the lerna, then problem (2.3) has a locally unique 
solution

c* =  n,4(z*) +  0 (/i)

for all h > 0 satisfying:

— \~c  mill (p , (C*eL)  x)

Moreover, there exist constant III e  (0,/?.o) , r i  e  (0, 7-*) such that discrete process (2 .4) 
converges to €1 and that:

Cn = n hzn + 0(h), n  -  0, 1 , 2 ,. ..

$k(Cn) =  r F ( z n) + 0(h), n  = 0, 1 ,2 , . . .

cn ~  ch ~  n h{zn — 2*) +  0(/(.), n — 0, 1 , 2 , . . . ,
I mi l l{71 >  0, | |z„ -  2*11 <  e} _  m i „ { n  >  0 : lie* -  Q\\  <  e}|  ^  1.
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