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Abstract. The paper presents the specializations of Rees rings, associated graded rings
and of integral closure of ideals. The preservation of some invariants of rings by special-

izations will also be concerned.
Introduction

Let k be an infinite field of arbitrary characteristic. Denote by K an extension field
of k. Let u = (uy,...,u,) be a family of indeterminates and o = (ay, ... ,q,) a family
of elements of K. We denote the polynomial rings in n variables 1, ... ,x, over k(u) and
k(o) by R = k(u)[z] and by R, = k(«)[x], respectively.

The first step toward an algebraic theory of specialization was the introduction of
the specialization of an ideal by W. Krull [2]. Let I be an ideal of R. The specialization
of I with respect to the substitution u — o € ™ is the ideal

I, = {f(a,x)| f(u,x) € INEk[u,z]} C klx].

“n

Following [2] the specialization of I with respect to the substitution v — « € K™ is
defined as the ideal I, of R, generated by elements of the set

(e, 2)] f(u,) € Tk, 2]}

A. Secidenberg [7] used specializations of ideals to prove that hyperplane sections of nor-
mal varicties are normal again under certain conditions. Using specializations of finitely
penerated free modules and of homomorphisins between them, we defined in [4] the special-
ization of a finitely generated module, and we showed that basic properties and operations
on modules are preserved by specializations. In [3] we followed the same approach to in-
troduce and to study specializations of finitely generated modules over a local ring [4] and
of graded modules over graded ring [5]. We will give the definitions of specializations of
Rees rings and associated graded rings, which are not finitely generated as R-modules and
we want also to study specializations of integral closures of ideals.

In this paper, we shall say that a property holds for almost all « if it holds for all
points of a Zariski-open non-empty subset of K. For convenience we shall often omit the
phrase "for almost all " in the proofs of the resultst,
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1. Some results about specialization of graded modules

Let k be an infinite field of arbitrary characteristic. Denote by K an extension field
of k. Let u = (uy,... ,u,) be a family of indeterminates and o = (1,...,a,,) a family
of elements of K. Let m and m, be the maximal graded ideals of R and R.,, respectively.

The specialization of ideals can be generalized to modules. First, each element
a(u,x) of R can be written in the form

p(u, )
q(u)

a(u,r) =

with p(u,z) € klu, ] and q(u) € k[u] \ {0}. For any a such that g(a) # 0 we define

) - p(a, )
1(a, 1) @)

Let F7 be a free R-module of finite rank. The specialization F), of F is a free
R,-module of the same rank. Let ¢ : F — G be a homomorphism of free R-modules.
We can represent ¢ by a matrix A = (a;;(u,z)) with respect to fixed bases of F and
G. Set A, = (a,j(a,x)). Then A, is well-defined for almost all &v. The specialization
¢o i Iy — G4 of ¢ is given by the matrix A, provided that A, is well-defined. We note
that the definition of ¢,, depends on the chosen bases of F, and G,.

Definition. [3] Let L be an R-module. Let Fy -2 F, —s L —>5 0 be a finite free
presentation of L. Let ¢, @ (F1)o — (Fy)a be a specialization of ¢. We call L,, =
Cokeré,, a specialization of L (with respect to ¢).

If we choose a different finite free presentation F) F, — L () we may get a
different specialization L/, of L, but L, and L!, are canonically isomorphic [4, Proposition
2.2]. Hence Ly, is uniquely determined up to isomorphisms. The following lemmas show
that the operations and the dimension of modules are preserved by specialization.

Lemma 1.1. [3, Proposition 3.2 and 3.6] Let L be a finitely generated R-mocule and
M, N submodules of L, and I an ideal of R. Then, for almost all .
(i) (L/M)y = Lo/M,,
(i) (MNN),=M,NN,,
i) (M + N)o = M, + N,,
) (L) =1I.L,.

Let L be a finitely generated R-module. The dimension and depth of L are denoted
by dim L and depth L, respectively.

Lemma 1.2. [3] Let L be a finitely generated R-module. Then, for almost all . we have
(i) AmnL, = (AnnL),,

(i) dimL, =dimL,

(i) depth L, = depth L.

We recall now some facts from 5] which we shall need later. First we note that R is
naturally graded. For a graded R-module L, we denote by L, the homogeneous component
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of L of degree t. For an integer i we let L(h) be the same module as L with grading shifted
by h, that is, we set L(h)y = Lp4+.

Let F = @;:1 R(—h;j) be a free graded R—n.m(lulo. We make the specialization [,
of F a free graded R,-module by setting Fi, = @j’:l Ro(—h;). Let

S S0
¢ EBR(—];U) — @ R(—ho;)
j=1 j=1

be a graded homomorphism of degree 0 given by a homogeneous matrix A = {ag(u,2))
Since
deg(aii(u,z)) + hoy = ... = deg(ais (4, T)) + hosy = h1s,

A, = (a;;(a,r)) is a homogeneous matrix with
deg(air (o, ) + ho1 = ... = deg(aisy (@, x)) + hosy = b

Therefore, the homomorphism
$1 S0
(f)ﬂ : @Rn(—h’lj) = @Ru(_h{)j)
=1 j=1

oiven by the matrix A, is a graded homomorphism of degree 0.

Lemma 1.3. [5, Lemma 2.3] Let L be a finitely generated graded R-module. Then L,
is a graded R, -module for almost all o

Let Fg : 0 — FE} ﬂ) Frey — -+ — Fy ity F, — L — 0 be a mini-

mal graded free resolution of L, where each free module F; may be written in the form
EBA/ R(—j)", and all graded homomorphisms have degree 0. The integers 3,; # 0 are
called the graded Betti numbers of L. The following lemma shows that the graded Betti
numbers are preserved by specializations.

Lemma 1.4. [5, Theorem 3.1] Let F be a minimal graded free resolution of L. Then the
complex

(Fo)n ; =~ (P‘f)ﬂ (ﬁ;' (Flj,fl)u = v —% (Fl)u (iﬂ;‘ (E))a S L(l — 0

is & minimal graded free resolution of L, with the same graded Betti numbers for almost

all ov.

2. Specialization of Rees rings and associated graded rings

Let yp,...,ys be a sequence of distinct indeterminates. The polynomial ring of
U1, .., ys with coefficients in R is denoted by R[y]. Let L be a finitely generated R-module.
Then besides considering the polynomial ring R[y] we may also consider polynomials in
Y1, ... ,ys with coefficients belong to L. The set L[y] of all this polynomials has a natural
structure as a module over R[y]. It is easily seen that Lly] = L ®g R[y]. By a definition
analogous to that used for the construction of L, we may give a specialization L{y]a of
L[y]. Here we have
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Lemma 2.1. Let L be a finitely generated R-module. Then Lyla = L,[y] for almost all
(.

Proof. Let R? £ RY —5 [, — 0 be a finite free presentation of L. Since R — Ry
and R, — R,[y] are flat, we can deduce that the sequences

1 Pa®l

R?[y] = Rily] — L[y] — 0 and RP[y] =5 R1[y] — L.yl —0

|
i

are finite frec presentations of Lly] and L., respectively. From the definition of special-
ization L{y|,, the following sequence is exact

R”[y]. (¢B1)a Ry, — L[yla — 0.
Because R"[yl, = R"[y] and (p® 1), = ¥Ya @ 1, therefore L[y], = L,[y).
Let I be an ideal of R. Denote the ring R/I by B. Let a be an ideal of B. We set

Blat] = @a’t’ C Blt],
' Ji>0
G(a,B) = @a-’ﬂ/a-"*lﬁﬁl.
120
Both, Blat] and G(a, B) are graded rings. Blat] is called the Rees ring and G(a, B)
the associated graded ring of B with respect to a. If a is generated by ay, ... a, € R/I,
then Blat] = Blagt, . .. ,ast]. Note that B, = Roile.
Suppose that J is an ideal of R such that [ CJanda=J/I. Thena, = J,/1, is
a specialization of a by Lemma 1.1.

Definition Let a be an ideal of B. We call B.la,t] and G(a,, B,,) as the specializations of
Blat] and G(a, B), respectively

Proposition 2.2. Let a be a proper ideal of B. Then, for almost v, we have
() dinp, (o, Glan, Ba) = dimpia G(a, B),
(i)  dim B,la,t] = dim Blat].

Proof. (i) There is dim B, = dim B by Lemma 1.2. Since dimp (a1 G(a,, B,) =
dim B, and dimga G(a, B) = dim B from 9. Chapter IV Proposition 1.9]. it follows
that dimpg, (a4 Glda, Ba) = dimp(ar) G(a, B).

(ii) Consider the B-algebra homomorphism ¢ - Blyi,... ,ys] — Blat], y; — a,t. Denote
by J the ideal of Blyy,... .. t] generated by the polynomials ¥ — @ity = 1,... 5. By
110, Proposition 7.2.1] . there is

Blat] = Bly1, ... ,ys]/J N Blgi, - s3]
Using Lemma 2.1, we can specialize Blat]. Semilarly, we have
Blat], = (Bly,... sl [ INBly1, oy a Bulyi, ..., ysl/Ja0BL [y, - .. Us| = Balat].

Since dim Blat], = dim Blat] by Lenuna 2.1, there is dimn B.laat] = dim Blat].
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Proposition 2.3. Let a be a proper ideal of B. Then, for almost «, we have
(i) depthg (4. G(aa, Ba) = depthgy G(a, B),
(ii) depth Bslant] = depth Blat].

Proof. The proof is immediate from Lemma 1.2 and [4, Theorem 3.1].

Recall that a ring A is a Cohen-Macaulay ring, if dim A = depth A. The following
corollary shows that the Cohen-Macaulay property of a Rees ring or an associated graded
ring is preserved by specializations.

Corollary 2.4. If Blat], (resp.G(a, B)), is Cohen-Macaulay, then B, |a,t], (resp.G(a,, Ba)
is again Cohen-Macaulay.

)

Proof. By an easy computation, the proof follows from Propositions 2.2 and 2.3.
Now we will show that the multiplicity of associated graded ring is preserved by

specialization.

Proposition 2.5. Let q = (y1,...,yqs)B be a parameter ideal of B, where dim B = d.
Then, for almost all a, we have

(J‘(qu: G(Cl(,, Bu)) - (’«(ql G(G, B)),
where e(qn; G(a., Bo)) and e(q; G(a, B)) are the multiplicities of G(a., B.,) and G(a, B)

respectively.

Proof. By Lemma 1.2, dim B, = d. By (7, Lemma 1.5] the ideal

qﬂ — ((yl)()m W i X (yll)w)Bu

is again a parameter ideal on B, and e(q,; Bo) = e(q; B) by [6, Theorem 1.6]. Because
e(qa: G(a,, Ba)) = e(qa; Ba) and e(q: G(a, B)) = e(q; B), then the proof is complete.
3. Noether normalizations and integral closures by specializations

Consider the standard graded ring R = kf[x;,...,x,] with deg(x;) = 1 for all
j = 1,...,n. Throughout this section, I will denote a homogeneous ideal of R and the
residue class ring R/I will again denote by B. Put dim B = d. Let us recall the notion of
Nocther normalization of a ring. Suppose that fi,..., fs are polynomials of R. The sub-
ring k(u)(f1, ..., fa] is called a Nocther normalization of B if fi,... | fq are algebraically
independent over k and B is a finitely generated k(u)[f1, ..., faJ-module. The following
proposition shalls show that a specialization of a Noether normalization of a ring is again
a Noether normalization.

Proposition 3.1. Assume that dim B = d and f,,... , fy € R are homogeneous polyno-
mials of positive degrees. If the subring k(u)[f1, ..., fa] is a Noether normalization of B,
then the subring k(o) [(f1)a, - -, (fa)al is also a Noether normalization of B.,.

Proof. We have dim B, = dimB = d by Lemma 1.2. By definition of specialization,
(fi)as---, (fa)a are homogeneous polynomials with deg(f;)o = deg f; for all j =1,... ,d.
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By virtue of Lemma 1.1 one can deduce (B/(f1,..-, fd))a = Ba/((fi)ay--- »(fi)a). From
110, Proposition 2.3.1], it is well known that the subring k(u)[f1,..., f4] is a Noether
normalization of B if and only if dimy ) B/(f1,..., fa) < co. Assume that the subring
k(u)(f1, ..., fa] is a Noether normalization of S. Then dim B/(f1,... , f4) = 0. By Lemma
1.2, dim(B/(f1,... , fa))a = 0. Hence the subring k(a)[(f1)a, .-, (fd)al is also a Noether
normalization of B,,.

The ring B is said to satisfy Serre’s condition (S,.) if depth B, > min{r, dim B}
for all p € Spec(R). Without loss of generality we can assume that A = k(u)[ry,..., 14
is a Noether normalization of B. In this case B is a finitely generated graded A-module.
Using the above proposition we are now in a position to prove the following result, see [6,
Lemma 4.3].

Corollary 3.2. If B satifies Serre’s condition (S,), so is B,, for almost all «.
Proof. We consider B as a finitely generated graded A-module. Suppose that
P 0—s A% B5 pfes ... f% B g . g .

is a minimal graded free resolution of B. Denote by I;(B) the ideal I, (y;),r; = rankp;.
By (10, Proposition 7.1.3], we know that B satifies (S,) if and only if ht I;(B) > j+r, j > 0.
By Proposition 3.1, A, = k(a)[z1, ... ,zq] is a Noether normalization of B, and

Fao: 0 —» A% P pder o, qts @ ydo g
is a minimal graded free resolution of B, by Lemma 1.4. Since rank(y,), = rank ¢, and
ht[;(B,) = ht 1;(B) for all 7 > 0 by Lenuna 1.2, therefore B, satifies Serre’s condition
(S,) by [10, Proposition 7.1.3].

The proplem of concern is now the preservation of the reduction number of B 'I)y
specializations. First, let us recall the definition of reduction number of a graded algebra.
Assume that B = @;>0B; is a finitely generated, positively graded algebra over a field
By = ky and z1, ... ,2z4 € k1[By] such that A = ky[z1, ..., z4) is a Nother normalization of
B. Let vy,... ,vs be a minimal set of homogeneous generators of B as an A-module

S
B = ZAU]', degv; = m;.
=1
The reduction number ra(B) of B with respec to A is the supremum of all m;.
Proposition 3.3. Let A be a Noether normalization of B. Then ra(B) = ra_(B,) for

almost all «.

Proof. As above, without loss of generality we can assume that A = k(u)|zy,... x4 is a
Noether normalization of B. Let vy,... v, be a minimal set of homogencous generators
of B as an A-module

h = ZA'UJ, degwv; = m;.

f=1
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We have dim B, = d by Lemma 1.2. Then A, = k(a)[z1,...,24] is a Noether normaliza-
tion of B, by Proposition 3.1 and B, = 2;21 Ao (Vj)a, deg(vj)a = degv; by definition
of specialization. Hence r4_(B,) = sup{deg(v;)o} = sup{degv;} = ra(B).

To study the specialization of integral closures of ideals we will recall the notion of
reduction of an ideal, an object first isolated by Northcott and Rees, see [1]. Let a and b
be ideals of B. a is said to be a reduction of b if a C b and ab” = b" ! for some nonnegative
integer r and the least integer r with this property is called the reduction number of b
with respect to a. This number is denoted by rq(b), and it is the largest non-vanishing
degree of b. An element z € B is integral over a if there is an equation

1—1

2™ 4 ”12” et Ay, = 0, a; € a'.

Denote the set of all elements of B, which are integral over a, by a. @ is called the integral
closure of ideal a. Note that z € B is integral over a if and only if 2t € B[t] is integral
over Blat]. The set of all ideals of B which have a as a reduction has a unique maxiimal
member. That is @ by [1, Corollary 18.1.6]. An ideal a is said to be integrally closed if
a = a. To study specializations of integral closures we need the following

Lemma 3.4. Let a and b be ideals of B.
(i) IfaCb, thenaC b.

(ii) Ifais a reduction of b, then b C a.

(iii) Ifa is a reduction of b, then @ = b.

Proof. (i) Assume that a C b. Suppose that z € a. There is an equation

m 1

2" +a12" 4+ +am =0, a; € a’.
Since a' C b, therefore z € b. Hence @ C b.
(ii) Assume that a is a reduction of b, then each element of b is integral over a by 1,
Proposition 18.1.5]. Thus b C a.
(iii) Assume that a is a reduction of b. Then a € b. Thus @ € b by (i). Because a is a

reduction of b, therefore b € @ by (ii). Thus b C (@). We need prove (a) = a. Since a is a
A I

reduction of @ and @ is a reduction of (_ﬁ—)— by [1, Corollary 18.1.6], a is a reduction of (a).

It implies @ = (@) from the maximality of integral closure of a.

Lemma 3.5. Let a be an ideal of B. Then (@), C a, and (@), = a, for almost all cv.

Proof. Note that if b is an ideal of B and a is a reduction of b, then there is an positive
integer r such that ab” = 6”1, Hence a, € b, and anb!, = b, by Lemma 1.1 (iv). Also,
a, is a reduction of b,. Since a is a reduction of @, therefore a, is a reduction of (@) hy
above note. Hence (a), € a, and a5 = ﬁ: follows from Lemma 3.4 (iii).

Theorem 3.6. Let a be an ideal of B. The integral closure of the Rees ring Bla,t] is the
integral closure of a specialization of the integral closure of the Rees ring Blat].

Proof. We know that the inegral closure of Blat] is the graded subring T = @JZUEJI‘J. By

above definition, the specialization of T is the graded subring T, = &;>0(a?),t7 and the
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irzgal cosure of T, is @;>0(a’)at?. Because (a?), = aj, by Lemma 3.5 and o and J

ny ccanmmute, i.e. (a’), = (a,)? = a},, therefore @;>akt’ is the integral closure of a
sjaliaion @©;>g(a’), t7 for almost all a.

Fopition 3.7. Let q be a paramer ideal of B. Then e(qx; Ba) = e(q: B) for almost all

O

Do 1 5 well-known that e(qq; B,) = e(qa; Ba) and e(g; B) = e(q: B) by [7]. The proof
ismiclizte from the equation e(qq; B,) = e(q: B) by [6, Theorem 1.6].
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