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A b s tra c t .  The paper presents the specializations of Rees rings, associated graded rings 
and of integral closure of ideals. The preservation of some invariants of lings by special­

izations will also be concerned.

I n t ro d u c t io n

Let k be an infinite field of arbitrary characteristic. Denote by K  ail extension field 
of k. Let u = ( u i , . . .  , Ut n)  be a family of indet.ennina.tes and o  =  ( a i , . . .  , O',,,.) a family 
of elements of K. We denote the polynomial rings in n  variables £ 1 , . . .  , x n over k(u)  and 
k(ot) by R  = k(u)[x] and by R Q = k(ct)[x], respectively.

The first step toward ail algebraic theory of specialization was the introduction of 
the specialization of ail ideal by w .  Krull [2]. Let I  be an ideal of R. The specialization 
of 1 with respect to the substitution u — > a  € k m is the ideal

If* =  { / ( a ,x ) |  /(w,x) G /nfe[u,:r]} c  fc[x].

Following [2] the specialization of /  wit h respect to the substitution u — > a  G A is 
defined as the ideal IQ of 7?a generated by elements of the set

{ / ( a , a ; ) | / K . x ) G / n A ; [ ^ x ] } .

A. Seidenberg [7] used specializations of ideals to prove that hyperplane sections of nor­
mal varieties are normal again under certain conditions. Using specializations of finitely 
generated free modules and of homomorphisms between them, we defined in [4] the special­
ization of a finitely generated module, and we showed that basic properties and operations 
on modules are preserved by specializations. Ill [3] we followed the sam e approach to in­
troduce and to s tu d y  specia lization s of finitely generated m odules over a local ling  [4] and 
of graded modules over graded ring [5]. We will give the definitions of specializations of 
Rees rings and associated graded rings, which are not finitely generated as /?-mođules and 
we want also to study specializations of integral closures of ideals.

In this paper, wc shall say tha t a property holds for almost all a  if it holds for all 
points of a. Zariski-open non-empty subset of K ni. For convenience wo shall often omit the 
phrase "tor almost all a ” ill the proofs of the results .
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Let k be an infinite field of arbitrary characteristic. Denote by K  an extension field 
of k. Let u = ( u .. , Urn) be a family of indeterminates and a  = (« ! , .  .. ,Qm) a family 
of elements of K.  Let m and ma be the maximal graded ideals of R  and i?Q, respectively.

The specialization of ideals can be generalized to modules. First, each element 
a(u,x)  of R  can be written in the form

1. Some r e s u l t s  a b o u t  specia l iza t ion  o f  g r a d e d  m o d u le s

p(u, x)  
a(u,x)  = —y " 

q{u)

with p(u,x)  G k[u,x] and q(u) £ k[u] \  {0}. For any a  such tha t q(a) Ỷ  0 we define

p(a, x)
a{a,x)  = ..> 7  ■

q(a)

Let F  be a free 7?-nio(lulo of finite rank. The specialization Fa of F  is a free 
7?tt-modulo of the same rank. Let Ộ : F  — > G be a homomorphism of free 7?-modules. 
We can represent Ộ by a matrix A = (di j (u,x))  with respect to fixed bases of F  and 
G. Set Aa = (.atj ( a , x )). Then A a is well-defined for almost all a.  The specialization 
ộct • Fa — > Ga of Ộ is given by the matrix A a provided th a t  A q is well-defined. We note 
that the definition of (f)a depends on the chosen bases of Fa arid Ga .

D efin ition . [3] Let L  be ail i?-mocỉule. Lot Fi - A  F() — > L  — > 0 be a finite free 
presentation of L.  Let 0Q : (F i)a — > (F0)a be a specialization of Ộ. We call L a := 
Coker 0a a specialization of L (with respect to ợí>).

If we choose a different finite free presentation  — > Fq — > L  — > 0 we may get a 
different specialization L'a of L, but L a arid L[y are canonically isomorphic [4, Proposition 
2.2]. Hence La is Iliiicjilcly deterniinecl up to isomorphisms. The following lemmas show 
that the operations and the dimension of modules are preserved by specialization.

L em m a 1 .1 . [3, Proposition 3.2 and 3.6] Let L be 3 finitely generated R-inocIule ãiìd 
M ,N  submodules o f  L, and Ỉ an ideal of /?. Then, for almost all O',
(i) ( L / M ) a = L a / M a ,
(ii) ( M n N ) a = Mn n  Na,
(iii) (M 4- N)a — Ma -f Na,
(iv) {IL)a =  IaL a .

Let L be a finitely generated R-module. The dimension and depth of L are denoted 
by (lim L and depth L, respectively.

L em m a 1 .2 . [3] Let L be a finitely generated R-nioclule. Then , for almost a 11 a , we have
(i) A nnLa = (Ann L)a ,
(ii) dim La =  dim L,
(iii) depth =  depth L.

We recall now some facts from [5] which we shall need later. First we note that R  is 
naturally graded. For a graded /?-inođule L, we denote by Lị the homogeneous component.



of L of degree t. For an integer h we let L(h)  be the same module as L with grading shifted
by //., that is, we set L(1i)t =  L/H-*.

Let F  =  © s=1 R ( —hj)  be a free graded i?-rnodule. We make the specialization Fn
of F  a free graded 7?a -moclule by setting Fa — = i Rot(-h j).  Let

s 1 50

j = l j = 1
be a graded homomorphism of degree 0 given by a homogeneous matrix A  = (dij(u,x)). 
Since

deg(aii(u ,x)) +  hoi =  . . .  =  deg (a iSo(u,x)) + h0so =  hu ,

A a =  (a,; (a, j ) )  is a homogeneous matrix with

<leg(«u(r>, x)) + hoi = . . .  = deg (aiso(a,x) )  + hQso = h U- 

Therefore, the homomorphism

ộ c t  : R a ( - h l j )  » R a (  — h o j )

j = 1 j = 1

given by the matrix i4a is a graded homomorphism of degree 0.

L em m a 1.3. [5, Lemma 2.3] Let L be a  finitely generated graded R-niodule. Then La 
is a graded R a-inoduie for almost all a.

Let F .  0 — ■» Ft Fg-I — ■ > •• •— > Fi F() — > L — > 0 be a mini- 
mal graded free resolution of L, where each free module Fi may be written in the form 
(Ị) R{ — j)- jlJ, and all graded homomorphisms have degree 0. The integers Pi j Ỷ  0 axe 
called the graded B e t t i  num bers  o f  L. T h e  following lemma shows that th e  graded Betti 
numbers are preserved by specializations.

L em m a  1.4. [5, Theorem 3.1] Let F # be a minimal graded free resolution of L. Then the 
complex

(F .)„  : 0 — > (F ,)„  — > --------------------------------> (F ,)« (Fo)« — > —  0

is a minimal graded free resolution o f  L a with the same graded Betti numbers for almost 
ni l  a .

2. Spec ia liza tion  o f  R e e s  r in g s  a n d  a sso c ia te d  g ra d e d  r ings

Let 1/1 , . . .  , Vs be a sequence of distinct indeterminat.es. The polynomial ring of 
2/1 , ■ , i/s with coefficients in 7? is denoted by i?[y]. Let L be a finitely generated i?-module.
Then besides considering the polynomial ring R{y\ we may also consider polynomials ill 
Ỉ/1? • • • iVs with coefficients belong to L. The set L[y} of all this polynomials has a natural 
structure as a module over R[y]. It is easily seen that L[y] =  L <S)R R[y]• By a definition 
analogous to that used for the construction of L a we may give a specialization L[y]a of 
L[y}. Here we have

Specia liza tions o f  R ee s  r in g s  a n d  in tegra l closures  27
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Lemma 2.1. Lot L be a. finitely generated R-module. Then L[y}rt = L a [y} for almost nil
at.

Proof. Let W' R '1 — » L  — * 0 be a finite free presentation of L. SÌ11C(' R  — > /?[/;] 
and R n > are flat, we call deduce thirlt the sequences

L [y] 0 and V ^ l  0

are finite free presentations of L[y] and L n , respectively. From the definition of special-
ization L[y]ữì the following sequence is exact

«"[!/]„ I f \ y \ „  — * L[y]a — t 0 .

Because i i ' l [y]Q =  /?':[/;] and (yj® 1 )Q = ự>0 ® 1 , therefore L[y]Q =* L a [y],
Let /  be an ideal of R.  Denote the ring R / I  by D.  Let a be an ideal of B.  We set

D[at] =  0 aJ tJ c  B[t],
j >  0

G(a, D) = ( Ị)aj tj /aj+1tj+1. 
j> 0

Both. #[ai] and G(n, z?) are graded rings. D[at] is railed tile Rees ring and G(a D) 
the associated graded ring  of 13 w ith  respect to  n. If n is generated  by III (1 E R / Ỉ  
then D[at] =  D[ai t , . .. , n st}. Note that D„ = /?„//,,.

Su])Ị)()S(' that ,7 is an ideal of R  such that, I  c  J  and a = J / I .  Then a = J  / I  is 
a specialization of a by Lemma 1 .1 .

Definition Let a be an ideal of D. We call B a [aa t] and G(aa , B 0 ) as the specializations of 
z?[af] and G( a , D) i respectively.

P ro p o s i t io n  2.2. Let  a be a proper ideal o f  D. Then , for almost O', we have
0 )  d i i nz*«[o„f ]  G ( c i q , Du ) = dhnD[ot] G ( a ,  B),
(ii) dim Ba[a(yt] =  dim z?[af].

Proof, (i) There is dim =  dim £  by Lemma 1 .2 . Since dimB(>[0((t] G(a,,,Ba) =
dim Dn and cliinc[at] G(d, D) = dim D from [9, Chapter IV Proposition 1 .9], it follows 
that diinBafnot] G(a„, Da ) = đimB[aí] G(a, D).
(ii) Consider the B-algebm homomorphism Ộ : B[yu . .. — ■> D\at], y, I— > a,t. Denote
by J  the icloal of , y s , t ] generated by the polynomials tjj — (lit i — 1 . . .  s. By
[10, Proposition 7.2.1] , there is

B[at) = D[yu  , ys] / J  n  D\ifU . . . , ys\.

Using Lemma 2 .1 , vve can specialize Dịat}. similarly, we have

B[at}u = ( / % ! , . . .  , f j s } / Jnn{ t j i , . . .  , y . , ] ) a  =  Da [tju . . .  , y.s ] / J , . n / ^ L v i ............... / / , ]  =  Bn [a„t}.

Since dim B\at]a =  (lini/?[a/j by Lc-nnna 2.1. there is dim Ba [fl(lt] =  dimi?[ai].
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P ro p o s i t io n  2.3. Let  a be a proper ideal o f  B. Then , for almost a ,  we have
(i) depthBn[0ot| G(a„, D„) = dep thB|ot] G(a, 5 ) ,
(ii) depth B a [aa t] = depth B[ai].

Proof. The proof is immediate from Lemma 1.2 and [4, Theorem 3.1].
Recall that a ring A  is à Cohen-Macaulay ring, if dim A — depth A. The following 

corollary shows that the Cohen-Macaulay property of a Rees ring or an associated graded 
ring is preserved by specializations.

C o ro lla ry  2.4. IĩBịat},  (resp.G(a, B)) ,  is Cohen-Macaulay, then £?a [aa £], (resp.G(aa , B a), 
is again Cohen-Macaulay.

Proof. By an easy computation, the proof follows from Propositions 2.2 and 2.3.
Now we will show tha t the multiplicity of associated graded ring is preserved by 

specialization.

P ro p o s i t io n  2.5. Let  q =  , yd)B be a parameter ideal o f  B , where dim D = d.
Then, for almost all a ,  wc have

e(qa ; G(aa , B a)) = e(q; G(a, B)),

where e(qa]G(act, B a )) and e(q;G(a,B) )  are the multiplicities o f  G(afỵ, B (i) and G(d, B)  
respectively.

Proof. By Lemma, 1.2, d im B a =  d. By [7, Lemma 1.5] the ideal

^\ol ( ( y  1 )  Ot Ì • • • Ĩ ( y d ) Oc)

is again a parameter ideal on B a and e(qa \ B (yi) = e(q;Z?) by [6, Theorem 1 .6]. Because 
e(qa ; ơ (a a , -Gfv)) =  e(qrv; jQa ) and e(q; G(a, 73)) =  e(q; -D), then the proof is complete-.

3. N o e th e r  n o rm a l iz a t io n s  a n d  in te g ra l  c lo su res  by  sp e c ia l iz a t io n s

Consider the standard graded ring R  = k[x 1 , . . .  , x n] with (leg(x.j) = 1 for all 
j  = 1 , . . .  , n. Throughout this section, I  will denote a homogeneous ideal of R  and the 
residue class ring R / I  will again denote by B.  Pu t climZ? =  d. Let us recall the notion of 
Noether normalization of a ring. Suppose that / i , . . .  , fd are polynomials of R. The sub­
ring fc('u)[/i, • • • , /V/] is called a Noether normalization of D if / i , . . .  , fci are algebraically 
independent over k  and D is a finitely generated fc (u )[ /i , . . .  , /d]-rnodule. The following 
proposition shells show tha t  a specialization of a Noether normalization of a ring is again 
a Noether normalization.

P ro p o s i t io n  3.1. Assum e that d im B  = d and / i , . . .  , fd £ /? are homogeneous polyno­
mials o f positive degrees. I f  the subring k(u)[ f  1 , . .  . , fd] is a Noether normalization o f  D , 
then the snbring k (a) [ ( f i ) a , . . .  , (/r/)a] is also a Noether normalization o f  Bo,.

Proof. We have dim I?a =  dimJ3 =  d by Lemma 1.2. By definition of specialization,
( / l ) Q) ■ • • , ( /d )a  are h om ogeneou s polynom ials  w ith  c le g ( / j )Q =  d e g / j  for all J -  I , . . .  , d.
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By virtue of Lemma 1.1 one can deduce ( B / ( / i , . . .  , /d ) )a  =  5 q / ( ( / i ) q ,  . . .  , (/d)a). From 
[10, Proposition 2.3.1], it is well known that the subring k(u)  [ / i , . .. ,fd] is a Noether 
normalization of D if and only if climfc(u) B / ( / i , . . .  , /d) < oo. Assume tha t the subring 
fc(ii)[/i,. . .  , /ci] is a.Noether normalization of s. Then d i m B / ( / i , . . .  , fd) = 0. By Lemma
1.2, d im ( B / ( / i , . . .  , f d) )Q = 0. Hence the subring fc (a )[( / i)a , . . .  , (fd)a] is also a Noether 
normalization of Da .

The ring D is said to satisfy Serre’s condition (Sr ) if depth Bp > min{r, dim Bp} 
for all p £ Spec(-R). W ithout loss of generality we can assume that A = k(u)[x 1 , . . .  ,Xd] 
is a Noether normalization of B.  In this case B  is a finitely generated graded A-module. 
Using the above proposition we are now in a position to prove the following result, see [6, 
Lemma 4.3].

C oro lla ry  3.2. I f  B  satifies Serre’s condition (Sr),  so is Da for almost all a.

Proof. We consider D as a. finitely generated graded A-module. Suppose that 

F .  : 0 — > A dt ^  A d' - '  — > -------- > A di ^  A d° — > D — > 0

is a minimal graded free resolution of D. Denote by I j ( B)  the ideal I, — rank(/?j.
By [10, Proposition 7.1.3], we know tha t  D satifies (Sr) if and only if ht I j ( B)  > j + r ,  j > 0. 
By Proposition 3.1, A a =  Ả;(a)[xi,. . .  ,Xd] is a Noether normalization of Bex and

F . q : 0 — A ị ' A ị ' - 1 — > -------- ■> A ị l A ị°  — * Da — ► 0

is a minimal graded free resolution of Da by Lemma 1.4. Since rank (ipj)ct — rank ipj and 
lit I j (B„)  =  ht I j ( B)  f( )r all j  > 0 by Lemma. 1.2, therefore B cỵ satifies Serre’s condition 
(Sr) by [10. Proposition 7.1.3].

The proplern of concern is now the preservation of the reduction number of D by 
specializations. First, let us recall the definition of reduction number of a graded algebra. 
Assume that B = ©t>o-ơf is a finitely generated, positively graded algebra over a field 
Dq — k  1 and z  1 , . . .  , Zd G k\ [ D\ ]  such that A =  k \ [ z \ , . . .  , Zd] is a Not her normalization of
B. Let . . .  , v s be a minimal set of homogeneous generators of D as an A-module

s

D = A v j , deg Vj =  m j .
j= i

The reduction n um ber  t a ( B)  o f  D  w ith  respec to  is th e  suprem uin  o f  all rrij.

P ro p o s i t io n  3.3. Let A be a Noether normalization o f B . Then v a {B) = VAfX(Ba) for 
almost all a.

Proof. As above, without loss of generality we can assume th a t  A — /c(u)[a:i,. . .  , X(i\ is a 
Noether normalization of B. Let V i , . .. , v s be a minimal set of homogeneous generators 
of B  as ail Ẩ-rnodule

s

B  = A v j , d egVj = rrij.
3 = 1
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We have dim B a = d by Lemma. 1.2. Then A a =  k ( a ) [ x i , . \ . , x d] is a Noether normaliza­
tion of Dry by Proposition 3.1 and Dn = Ỵ^Sj =i.Aa(vj)a, deg(Vj)a = degVj  by definition 
of specialization. Hence TAa {B,y) =  sup{deg(uj)Q} =  sup{degVj} =

To study the specialization of integral closures of ideals we will recall the notion of 
reduction of ail ideal, an object first isolated by Northcott and Rees, see [1]. Let Q and b 
he ideals of D. a is said to be a reduction of b if a c  b and abr =  br+1 for some nonnegative 
integer r  and the  least integer V w ith  th is  property is called the  reduction  number of b 
with respect to a. This number is denoted by r a(b), and it is the largest non-vanishing 
degree of b. An element 2 e  B  is integral over a if there is ail equation

z'n +  a i z 'n~ l +  ■ • • +  a , „  =  0, a ,  e  a*.

Denote the set of all elements of D, which are integral over a, by n. ã is called the integral 
closure of ideal a. Note tha t z £ 13 is integral over a if and only if z t  € B[t] is integral 
over B[at}. The set of all ideals of D which have n as a reduction has a unique maximal 
member. That is Õ by [1, Corollary 18.1.6]. An ideal a is said to be integrally closed if 
a — Õ. To study specializations of integral closures we need the following

L em m a 3.4. Let a and (.1 be ideals u ỉ  B.
(i) I f  a c  li, then n c  b.
(ii) If  a is a reduction of b ,  then b c  Õ.
(iii) I f  a is a reduction o f  b, then ã  =  b.

Proof, (i) Assume that a c  b. Suppose that 2 G ã. There is an equation

z ' n +  d \ z ' n  ̂ +  ■ ■ ■ +  ( l /n — 0 , (lị E  Cl .

Since a' c  IV', therefore 2 Gb. Hence ã c  b.
(ii) Assume that a is a reduction of b, then each element of b is integral over a by [1 , 
Proposition 18.1.5]. Thus b c  a.
(iii) Assume that, n is a reduction of b. Then a c  b. Thus ã  c  b by (i). Because 0 is a
reduction of [i, therefore b c  ã  by (ii). Thus b c  (ã). We need prove (ã) =  ã. Since a is a 
reduction of Õ and a is a reduction of (a) by [1 . Corollary 18.1.6], a is a reduction of (a).
It implies n =  (ã) from the maximality of integral closure of a.

L em m a  3.5. Let a be an ideal o f  D. Then  (a)a c  aQ and (a)„ =  a,, for almost nil a.

Proof. Note tha t if b is an ideal of D and a is a reduction of b, then there is an positive 
integer r such that all'- =  IV+1. Hence a« c  bQ and a„b';, = bra+1 by Lemma. 1.1 (iv). Also,
a,, is a reduction of bu . Since a is a reduction of a, therefore aQ is a reduction of (o)o by 
above note. Hence (0)o c  0^ and =  (ã)o follows from Lemma. 3.4 (iii).

T h e o re m  3 .6 . Let a be an ideal o f B. The integral closure o f the Bees ring Z3[a„/] is the 
integral closure o f a specialization o f  the integral closure o f  the Rees ring D[at],

Proof. We know that the inegral closure of D[at] is the graded subring T  =  ■ By
above definition, the specialization of T  is the graded subring Ta — © j>o(& )atJ the



iiegalc.osure of Ta is ©j>o(aJ )QíJ . Because (aJ)a = nJQ by Lemma 3.5 and a  and j
„y  >econmmtc, i.e. (aJ)q =  (aa )j  =  aJc ,  therefore ® j> o a 3a P  is th e  integral closure of a, 
sjcili-tf'ion ®j>o(aj)a tJ for almost all a.

Fopiition 3.7. Let  q be a  paramer ideal o f  D. Then e(q^; D a ) = e(q: B) for almost, all

1)0 ] K well-known that e(q77: B a) = e(qa ]Ba) and e(q; D ) =  e(q: B ) by [7], The proof 
icjuidiite from the equation e(qa, B a) = e(q; B)  by [6. Theorem 1.6].
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