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A b s tra c t .  The paper presents the specializations of Rees rings, associated graded rings 
and of integral closure of ideals. The preservation of some invariants of lings by special

izations will also be concerned.

I n t ro d u c t io n

Let k be an infinite field of arbitrary characteristic. Denote by K  ail extension field 
of k. Let u = ( u i , . . .  , Ut n)  be a family of indet.ennina.tes and o  =  ( a i , . . .  , O',,,.) a family 
of elements of K. We denote the polynomial rings in n  variables £ 1 , . . .  , x n over k(u)  and 
k(ot) by R  = k(u)[x] and by R Q = k(ct)[x], respectively.

The first step toward ail algebraic theory of specialization was the introduction of 
the specialization of ail ideal by w .  Krull [2]. Let I  be an ideal of R. The specialization 
of 1 with respect to the substitution u — > a  € k m is the ideal

If* =  { / ( a ,x ) |  /(w,x) G /nfe[u,:r]} c  fc[x].

Following [2] the specialization of /  wit h respect to the substitution u — > a  G A is 
defined as the ideal IQ of 7?a generated by elements of the set

{ / ( a , a ; ) | / K . x ) G / n A ; [ ^ x ] } .

A. Seidenberg [7] used specializations of ideals to prove that hyperplane sections of nor
mal varieties are normal again under certain conditions. Using specializations of finitely 
generated free modules and of homomorphisms between them, we defined in [4] the special
ization of a finitely generated module, and we showed that basic properties and operations 
on modules are preserved by specializations. Ill [3] we followed the sam e approach to in
troduce and to s tu d y  specia lization s of finitely generated m odules over a local ling  [4] and 
of graded modules over graded ring [5]. We will give the definitions of specializations of 
Rees rings and associated graded rings, which are not finitely generated as /?-mođules and 
we want also to study specializations of integral closures of ideals.

In this paper, wc shall say tha t a property holds for almost all a  if it holds for all 
points of a. Zariski-open non-empty subset of K ni. For convenience wo shall often omit the 
phrase "tor almost all a ” ill the proofs of the results .
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Let k be an infinite field of arbitrary characteristic. Denote by K  an extension field 
of k. Let u = ( u .. , Urn) be a family of indeterminates and a  = (« ! , .  .. ,Qm) a family 
of elements of K.  Let m and ma be the maximal graded ideals of R  and i?Q, respectively.

The specialization of ideals can be generalized to modules. First, each element 
a(u,x)  of R  can be written in the form

1. Some r e s u l t s  a b o u t  specia l iza t ion  o f  g r a d e d  m o d u le s

p(u, x)  
a(u,x)  = —y " 

q{u)

with p(u,x)  G k[u,x] and q(u) £ k[u] \  {0}. For any a  such tha t q(a) Ỷ  0 we define

p(a, x)
a{a,x)  = ..> 7  ■

q(a)

Let F  be a free 7?-nio(lulo of finite rank. The specialization Fa of F  is a free 
7?tt-modulo of the same rank. Let Ộ : F  — > G be a homomorphism of free 7?-modules. 
We can represent Ộ by a matrix A = (di j (u,x))  with respect to fixed bases of F  and 
G. Set Aa = (.atj ( a , x )). Then A a is well-defined for almost all a.  The specialization 
ộct • Fa — > Ga of Ộ is given by the matrix A a provided th a t  A q is well-defined. We note 
that the definition of (f)a depends on the chosen bases of Fa arid Ga .

D efin ition . [3] Let L  be ail i?-mocỉule. Lot Fi - A  F() — > L  — > 0 be a finite free 
presentation of L.  Let 0Q : (F i)a — > (F0)a be a specialization of Ộ. We call L a := 
Coker 0a a specialization of L (with respect to ợí>).

If we choose a different finite free presentation  — > Fq — > L  — > 0 we may get a 
different specialization L'a of L, but L a arid L[y are canonically isomorphic [4, Proposition 
2.2]. Hence La is Iliiicjilcly deterniinecl up to isomorphisms. The following lemmas show 
that the operations and the dimension of modules are preserved by specialization.

L em m a 1 .1 . [3, Proposition 3.2 and 3.6] Let L be 3 finitely generated R-inocIule ãiìd 
M ,N  submodules o f  L, and Ỉ an ideal of /?. Then, for almost all O',
(i) ( L / M ) a = L a / M a ,
(ii) ( M n N ) a = Mn n  Na,
(iii) (M 4- N)a — Ma -f Na,
(iv) {IL)a =  IaL a .

Let L be a finitely generated R-module. The dimension and depth of L are denoted 
by (lim L and depth L, respectively.

L em m a 1 .2 . [3] Let L be a finitely generated R-nioclule. Then , for almost a 11 a , we have
(i) A nnLa = (Ann L)a ,
(ii) dim La =  dim L,
(iii) depth =  depth L.

We recall now some facts from [5] which we shall need later. First we note that R  is 
naturally graded. For a graded /?-inođule L, we denote by Lị the homogeneous component.



of L of degree t. For an integer h we let L(h)  be the same module as L with grading shifted
by //., that is, we set L(1i)t =  L/H-*.

Let F  =  © s=1 R ( —hj)  be a free graded i?-rnodule. We make the specialization Fn
of F  a free graded 7?a -moclule by setting Fa — = i Rot(-h j).  Let

s 1 50

j = l j = 1
be a graded homomorphism of degree 0 given by a homogeneous matrix A  = (dij(u,x)). 
Since

deg(aii(u ,x)) +  hoi =  . . .  =  deg (a iSo(u,x)) + h0so =  hu ,

A a =  (a,; (a, j ) )  is a homogeneous matrix with

<leg(«u(r>, x)) + hoi = . . .  = deg (aiso(a,x) )  + hQso = h U- 

Therefore, the homomorphism

ộ c t  : R a ( - h l j )  » R a (  — h o j )

j = 1 j = 1

given by the matrix i4a is a graded homomorphism of degree 0.

L em m a 1.3. [5, Lemma 2.3] Let L be a  finitely generated graded R-niodule. Then La 
is a graded R a-inoduie for almost all a.

Let F .  0 — ■» Ft Fg-I — ■ > •• •— > Fi F() — > L — > 0 be a mini- 
mal graded free resolution of L, where each free module Fi may be written in the form 
(Ị) R{ — j)- jlJ, and all graded homomorphisms have degree 0. The integers Pi j Ỷ  0 axe 
called the graded B e t t i  num bers  o f  L. T h e  following lemma shows that th e  graded Betti 
numbers are preserved by specializations.

L em m a  1.4. [5, Theorem 3.1] Let F # be a minimal graded free resolution of L. Then the 
complex

(F .)„  : 0 — > (F ,)„  — > --------------------------------> (F ,)« (Fo)« — > —  0

is a minimal graded free resolution o f  L a with the same graded Betti numbers for almost 
ni l  a .

2. Spec ia liza tion  o f  R e e s  r in g s  a n d  a sso c ia te d  g ra d e d  r ings

Let 1/1 , . . .  , Vs be a sequence of distinct indeterminat.es. The polynomial ring of 
2/1 , ■ , i/s with coefficients in 7? is denoted by i?[y]. Let L be a finitely generated i?-module.
Then besides considering the polynomial ring R{y\ we may also consider polynomials ill 
Ỉ/1? • • • iVs with coefficients belong to L. The set L[y} of all this polynomials has a natural 
structure as a module over R[y]. It is easily seen that L[y] =  L <S)R R[y]• By a definition 
analogous to that used for the construction of L a we may give a specialization L[y]a of 
L[y}. Here we have

Specia liza tions o f  R ee s  r in g s  a n d  in tegra l closures  27
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Lemma 2.1. Lot L be a. finitely generated R-module. Then L[y}rt = L a [y} for almost nil
at.

Proof. Let W' R '1 — » L  — * 0 be a finite free presentation of L. SÌ11C(' R  — > /?[/;] 
and R n > are flat, we call deduce thirlt the sequences

L [y] 0 and V ^ l  0

are finite free presentations of L[y] and L n , respectively. From the definition of special-
ization L[y]ữì the following sequence is exact

«"[!/]„ I f \ y \ „  — * L[y]a — t 0 .

Because i i ' l [y]Q =  /?':[/;] and (yj® 1 )Q = ự>0 ® 1 , therefore L[y]Q =* L a [y],
Let /  be an ideal of R.  Denote the ring R / I  by D.  Let a be an ideal of B.  We set

D[at] =  0 aJ tJ c  B[t],
j >  0

G(a, D) = ( Ị)aj tj /aj+1tj+1. 
j> 0

Both. #[ai] and G(n, z?) are graded rings. D[at] is railed tile Rees ring and G(a D) 
the associated graded ring  of 13 w ith  respect to  n. If n is generated  by III (1 E R / Ỉ  
then D[at] =  D[ai t , . .. , n st}. Note that D„ = /?„//,,.

Su])Ị)()S(' that ,7 is an ideal of R  such that, I  c  J  and a = J / I .  Then a = J  / I  is 
a specialization of a by Lemma 1 .1 .

Definition Let a be an ideal of D. We call B a [aa t] and G(aa , B 0 ) as the specializations of 
z?[af] and G( a , D) i respectively.

P ro p o s i t io n  2.2. Let  a be a proper ideal o f  D. Then , for almost O', we have
0 )  d i i nz*«[o„f ]  G ( c i q , Du ) = dhnD[ot] G ( a ,  B),
(ii) dim Ba[a(yt] =  dim z?[af].

Proof, (i) There is dim =  dim £  by Lemma 1 .2 . Since dimB(>[0((t] G(a,,,Ba) =
dim Dn and cliinc[at] G(d, D) = dim D from [9, Chapter IV Proposition 1 .9], it follows 
that diinBafnot] G(a„, Da ) = đimB[aí] G(a, D).
(ii) Consider the B-algebm homomorphism Ộ : B[yu . .. — ■> D\at], y, I— > a,t. Denote
by J  the icloal of , y s , t ] generated by the polynomials tjj — (lit i — 1 . . .  s. By
[10, Proposition 7.2.1] , there is

B[at) = D[yu  , ys] / J  n  D\ifU . . . , ys\.

Using Lemma 2 .1 , vve can specialize Dịat}. similarly, we have

B[at}u = ( / % ! , . . .  , f j s } / Jnn{ t j i , . . .  , y . , ] ) a  =  Da [tju . . .  , y.s ] / J , . n / ^ L v i ............... / / , ]  =  Bn [a„t}.

Since dim B\at]a =  (lini/?[a/j by Lc-nnna 2.1. there is dim Ba [fl(lt] =  dimi?[ai].
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P ro p o s i t io n  2.3. Let  a be a proper ideal o f  B. Then , for almost a ,  we have
(i) depthBn[0ot| G(a„, D„) = dep thB|ot] G(a, 5 ) ,
(ii) depth B a [aa t] = depth B[ai].

Proof. The proof is immediate from Lemma 1.2 and [4, Theorem 3.1].
Recall that a ring A  is à Cohen-Macaulay ring, if dim A — depth A. The following 

corollary shows that the Cohen-Macaulay property of a Rees ring or an associated graded 
ring is preserved by specializations.

C o ro lla ry  2.4. IĩBịat},  (resp.G(a, B)) ,  is Cohen-Macaulay, then £?a [aa £], (resp.G(aa , B a), 
is again Cohen-Macaulay.

Proof. By an easy computation, the proof follows from Propositions 2.2 and 2.3.
Now we will show tha t the multiplicity of associated graded ring is preserved by 

specialization.

P ro p o s i t io n  2.5. Let  q =  , yd)B be a parameter ideal o f  B , where dim D = d.
Then, for almost all a ,  wc have

e(qa ; G(aa , B a)) = e(q; G(a, B)),

where e(qa]G(act, B a )) and e(q;G(a,B) )  are the multiplicities o f  G(afỵ, B (i) and G(d, B)  
respectively.

Proof. By Lemma, 1.2, d im B a =  d. By [7, Lemma 1.5] the ideal

^\ol ( ( y  1 )  Ot Ì • • • Ĩ ( y d ) Oc)

is again a parameter ideal on B a and e(qa \ B (yi) = e(q;Z?) by [6, Theorem 1 .6]. Because 
e(qa ; ơ (a a , -Gfv)) =  e(qrv; jQa ) and e(q; G(a, 73)) =  e(q; -D), then the proof is complete-.

3. N o e th e r  n o rm a l iz a t io n s  a n d  in te g ra l  c lo su res  by  sp e c ia l iz a t io n s

Consider the standard graded ring R  = k[x 1 , . . .  , x n] with (leg(x.j) = 1 for all 
j  = 1 , . . .  , n. Throughout this section, I  will denote a homogeneous ideal of R  and the 
residue class ring R / I  will again denote by B.  Pu t climZ? =  d. Let us recall the notion of 
Noether normalization of a ring. Suppose that / i , . . .  , fd are polynomials of R. The sub
ring fc('u)[/i, • • • , /V/] is called a Noether normalization of D if / i , . . .  , fci are algebraically 
independent over k  and D is a finitely generated fc (u )[ /i , . . .  , /d]-rnodule. The following 
proposition shells show tha t  a specialization of a Noether normalization of a ring is again 
a Noether normalization.

P ro p o s i t io n  3.1. Assum e that d im B  = d and / i , . . .  , fd £ /? are homogeneous polyno
mials o f positive degrees. I f  the subring k(u)[ f  1 , . .  . , fd] is a Noether normalization o f  D , 
then the snbring k (a) [ ( f i ) a , . . .  , (/r/)a] is also a Noether normalization o f  Bo,.

Proof. We have dim I?a =  dimJ3 =  d by Lemma 1.2. By definition of specialization,
( / l ) Q) ■ • • , ( /d )a  are h om ogeneou s polynom ials  w ith  c le g ( / j )Q =  d e g / j  for all J -  I , . . .  , d.
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By virtue of Lemma 1.1 one can deduce ( B / ( / i , . . .  , /d ) )a  =  5 q / ( ( / i ) q ,  . . .  , (/d)a). From 
[10, Proposition 2.3.1], it is well known that the subring k(u)  [ / i , . .. ,fd] is a Noether 
normalization of D if and only if climfc(u) B / ( / i , . . .  , /d) < oo. Assume tha t the subring 
fc(ii)[/i,. . .  , /ci] is a.Noether normalization of s. Then d i m B / ( / i , . . .  , fd) = 0. By Lemma
1.2, d im ( B / ( / i , . . .  , f d) )Q = 0. Hence the subring fc (a )[( / i)a , . . .  , (fd)a] is also a Noether 
normalization of Da .

The ring D is said to satisfy Serre’s condition (Sr ) if depth Bp > min{r, dim Bp} 
for all p £ Spec(-R). W ithout loss of generality we can assume that A = k(u)[x 1 , . . .  ,Xd] 
is a Noether normalization of B.  In this case B  is a finitely generated graded A-module. 
Using the above proposition we are now in a position to prove the following result, see [6, 
Lemma 4.3].

C oro lla ry  3.2. I f  B  satifies Serre’s condition (Sr),  so is Da for almost all a.

Proof. We consider D as a. finitely generated graded A-module. Suppose that 

F .  : 0 — > A dt ^  A d' - '  — > -------- > A di ^  A d° — > D — > 0

is a minimal graded free resolution of D. Denote by I j ( B)  the ideal I, — rank(/?j.
By [10, Proposition 7.1.3], we know tha t  D satifies (Sr) if and only if ht I j ( B)  > j + r ,  j > 0. 
By Proposition 3.1, A a =  Ả;(a)[xi,. . .  ,Xd] is a Noether normalization of Bex and

F . q : 0 — A ị ' A ị ' - 1 — > -------- ■> A ị l A ị°  — * Da — ► 0

is a minimal graded free resolution of Da by Lemma 1.4. Since rank (ipj)ct — rank ipj and 
lit I j (B„)  =  ht I j ( B)  f( )r all j  > 0 by Lemma. 1.2, therefore B cỵ satifies Serre’s condition 
(Sr) by [10. Proposition 7.1.3].

The proplern of concern is now the preservation of the reduction number of D by 
specializations. First, let us recall the definition of reduction number of a graded algebra. 
Assume that B = ©t>o-ơf is a finitely generated, positively graded algebra over a field 
Dq — k  1 and z  1 , . . .  , Zd G k\ [ D\ ]  such that A =  k \ [ z \ , . . .  , Zd] is a Not her normalization of
B. Let . . .  , v s be a minimal set of homogeneous generators of D as an A-module

s

D = A v j , deg Vj =  m j .
j= i

The reduction n um ber  t a ( B)  o f  D  w ith  respec to  is th e  suprem uin  o f  all rrij.

P ro p o s i t io n  3.3. Let A be a Noether normalization o f B . Then v a {B)  = VAfX(Ba) for 
almost all a.

Proof. As above, without loss of generality we can assume th a t  A — /c(u)[a:i,. . .  , X(i\ is a 
Noether normalization of B. Let V i , . .. , v s be a minimal set of homogeneous generators 
of B  as ail Ẩ-rnodule

s

B  = A v j , d egVj = rrij.
3 = 1
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We have dim B a = d by Lemma. 1.2. Then A a =  k ( a ) [ x i , . \ . , x d] is a Noether normaliza
tion of Dry by Proposition 3.1 and Dn = Ỵ^Sj =i.Aa(vj)a, deg(Vj)a = degVj  by definition 
of specialization. Hence TAa {B,y) =  sup{deg(uj)Q} =  sup{degVj} =

To study the specialization of integral closures of ideals we will recall the notion of 
reduction of ail ideal, an object first isolated by Northcott and Rees, see [1]. Let Q and b 
he ideals of D. a is said to be a reduction of b if a c  b and abr =  br+1 for some nonnegative 
integer r  and the  least integer V w ith  th is  property is called the  reduction  number of b 
with respect to a. This number is denoted by r a(b), and it is the largest non-vanishing 
degree of b. An element 2 e  B  is integral over a if there is ail equation

z'n +  a i z 'n~ l +  ■ • • +  a , „  =  0, a ,  e  a*.

Denote the set of all elements of D, which are integral over a, by n. ã is called the integral 
closure of ideal a. Note tha t z £ 13 is integral over a if and only if z t  € B[t] is integral 
over B[at}. The set of all ideals of D which have n as a reduction has a unique maximal 
member. That is Õ by [1, Corollary 18.1.6]. An ideal a is said to be integrally closed if 
a — Õ. To study specializations of integral closures we need the following

L em m a 3.4. Let a and (.1 be ideals u ỉ  B.
(i) I f  a c  li, then n c  b.
(ii) If  a is a reduction of b ,  then b c  Õ.
(iii) I f  a is a reduction o f  b, then ã  =  b.

Proof, (i) Assume that a c  b. Suppose that 2 G ã. There is an equation

z ' n +  d \ z ' n  ̂ +  ■ ■ ■ +  ( l /n — 0 , (lị E  Cl .

Since a' c  IV', therefore 2 Gb. Hence ã c  b.
(ii) Assume that a is a reduction of b, then each element of b is integral over a by [1 , 
Proposition 18.1.5]. Thus b c  a.
(iii) Assume that, n is a reduction of b. Then a c  b. Thus ã  c  b by (i). Because 0 is a
reduction of [i, therefore b c  ã  by (ii). Thus b c  (ã). We need prove (ã) =  ã. Since a is a 
reduction of Õ and a is a reduction of (a) by [1 . Corollary 18.1.6], a is a reduction of (a).
It implies n =  (ã) from the maximality of integral closure of a.

L em m a  3.5. Let a be an ideal o f  D. Then  (a)a c  aQ and (a)„ =  a,, for almost nil a.

Proof. Note tha t if b is an ideal of D and a is a reduction of b, then there is an positive 
integer r such that all'- =  IV+1. Hence a« c  bQ and a„b';, = bra+1 by Lemma. 1.1 (iv). Also,
a,, is a reduction of bu . Since a is a reduction of a, therefore aQ is a reduction of (o)o by 
above note. Hence (0)o c  0^ and =  (ã)o follows from Lemma. 3.4 (iii).

T h e o re m  3 .6 . Let a be an ideal o f B. The integral closure o f the Bees ring Z3[a„/] is the 
integral closure o f a specialization o f  the integral closure o f  the Rees ring D[at],

Proof. We know that the inegral closure of D[at] is the graded subring T  =  ■ By
above definition, the specialization of T  is the graded subring Ta — © j>o(& )atJ the



iiegalc.osure of Ta is ©j>o(aJ )QíJ . Because (aJ)a = nJQ by Lemma 3.5 and a  and j
„y  >econmmtc, i.e. (aJ)q =  (aa )j  =  aJc ,  therefore ® j> o a 3a P  is th e  integral closure of a, 
sjcili-tf'ion ®j>o(aj)a tJ for almost all a.

Fopiition 3.7. Let  q be a  paramer ideal o f  D. Then e(q^; D a ) = e(q: B) for almost, all

1)0 ] K well-known that e(q77: B a) = e(qa ]Ba) and e(q; D ) =  e(q: B ) by [7], The proof 
icjuidiite from the equation e(qa, B a) = e(q; B)  by [6. Theorem 1.6].
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