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SMALL MODULES AND QF-RINGS

Ngo Si Tung
Department of Mathematics,Vinh University

Abstract. It is shown that a semiperfect ring I is quasi-Frobenius if and only if R has
finite right uniform dimension and every closed uniform submodule of R(w) is a direct
summand, where R(w) denotes the direct sum of w copies of the right R-module R and
w is the first infinite ordinal. This result extends the one of D. V. Huynh and N. S. Tung

in [5. Theorem 1].

1. Introduction

Quasi-Frobenius rings (briefly, a QF-ring) were introduced by Nakayama in 1938.
A ring R is a QF if it is a left artinian, left seflinjective ring. The class of QF-rings is one
of the most interesting generlization of semisimple rings and have been studied by several
authors (see, for example [4], [5], [7]). The number of characterization of QF-rings are so
large that we are unable to give all the references here. In this paper, we will extend the
result which was given by D. V. Huynh and N. S. Tung in [5]. Throughtout this note all
rings R are associative rings with indentity and all modules are unitary right R-modules.

2. Preliminaries

A submodule N of a module M is called small in M, or a small submodule of M,
denoted by N C° M, if for each submodule H of M, the relation N + H = M implies
H = M (or equivalently for each proper submodule H of M, M # N + H). A module S is
said to be a small module, if S is small in its injective hull. If S is not a small module, we
say that S is non-small. By this definition we may consider the zero module as a non-small
module although it is small in each non-zero module.

Small modules and non-small modules have been considered by many authors. In
particular, Harada [3] and Oshiro (7] used these and related concepts of modules to char-
acterize serveral interesting classes of rings including artinian serial rings and QF-rings.

Dually, a submodule F of a module M is called essential in M, or an essential
submodule of M, if for any non-zero submodule T of M, ENT # 0. A non-zero module
U is uniform if any non-zero submodule of U is essential in U.

Now let A € B be a submodule of a module M such that A is essential in B. Then
we say that B is an essential extension of Ain M. A module C of M is called a closed
submodule of M if C has no proper essension in M. By Zorn’s Lemma, each submodule
of M is contained essentially in a closed submodule of M.

If a module M has only one maximal submodule which contains all proper submod-
ules of M, then M is called a local module.
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3. The results

Lemma 1. i) If N is a non-zero small submodule of module M then N is a small module.
ii) Let M be a local module such that any closed submodule of M is non-small.
Then M is uniform.

iii) Let A, B be modules with A = B, then A is small if and only if B is small.

Proof. i) Since N is submodule of M, E(M) = E(N)@®Y for some submodule Y of E(M).
Since N €° M, N C°® E(M). By [6, Lemma 4.2(2)] we have N is a small submodule of
E(N), therefore N is small module.

ii) Is obvious.

iii) Since A 2 B there is an isomorphism

¢ : E(A) = E(B) with ¢(A) = B.
Hence the statement follows from [6, Lemma 4.2(3)].

Lemma 2. [1, Chapter 27] Let R be a semiperfect ring, then R contains a complete set
of primitive orthogonal idempotents {e;, ey, ..., en} such that

R=e,R®eR® - - ®e, R (1)

and each ¢; R is a local module with local endomorphism ring. Moreover, the maximal
submodule of each ¢; R is a small submodule of e; R.

We keep this decomposition of K thoughout the consideration below.

Lemma 3. Let R be a semiperfect ring satifies one of two conditions:

a) Every closed submodule of R(w) is non-small.

b) R has finite right uniform dimension and every closed uniform submodule of
R(w) is non-small.

Then we have:

i) Every e; R is uniform.

ii) Bach e;R is not embedded properly ine;R, j = 1,2,...,n.

iii) Every closed uniform submodule of R(w) is a direct summand.

Proof. Case 1: R satisfies a).

i) By (1), each closed submodule U of €;R is closed in R(w), hence U is non-small
by a). If U is non-zero then ¢; R = U, which shows that e; R is uniform.

ii) By i) and (1) each ¢;R is a closed uniform submodule of R(w). Hence ¢; K is
non-small by a).

Then by Lemma 1, each e; R can not embedded properly in ¢ R, (j = 1, ..., n).

iii) For convenience we write R(w) in the form:

R(w) = ®act Pa, (2)

where each P, is isomorphism to some e; R in {e R, ... ,e, R} and I is an infinite countable
set.
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By i) each P, is uniform. Let U be a closed uniform submodule of R(w). For each
a we denote by 7, the projection of R(w) onto Pj,.

Then there exists a subset J of I which is maximal with respect to U N R(J) =0
and U & R(J) C° R(w). We show that there exists only k € I such that J = I'\{k}.

Indeed, suppose there exists ky # ko € J let

X, =P, N(RJ)BU),
Xo = Py NIRRT @ 1T} .

~—

Since R(J)® U C° R(w), X1 #0, Xy #0. Let
X = (P & Pi,) N (R(J) B U).

Then X; 4+ X € X and X N R(J) = 0. Consider the projection « : R(J) — U, from
X N R(J) = 0 we infer that m/X is a monomorphism, hence X = w(X) C U. Thus X
contains a submodule which is isomorphism with X; @& X5, a contradiction to the fact that
U is nniform.

Therefore, there is only index k € I such that J = I'\{k}. Then, we have UNker 7y =
0. Hence U =2 7 (U) € Px. By hypothesis, U is non-small, hence 7, (U) is also non-small
by Lemma 1. It follows that Py = 7. (U), since P is a local module.

From this, it is easy to see that R(w) = U @ ker my as desired.

Case 2: R satisfies b).

By the hypothesis b), U is non-small, since e; R is a local module then each proper
submodule of ¢; R is small. Hence U = ¢; R, otherword ¢; R is uniform, we have 1).

1) and iil) can prove similarly.

The following theorem was given by D. V. Huynh and N. S. Tung in [5].

Theorem 4. Let R be a semiperfect ring. Then the following statements are equavelent:
i) R is a QF-ring.
i1) R has finite right uniform dimension, no non-zero projective right ideal of R is
contained in the jacobson radical J(R) of R and every closed uniform submodule of R(w)
is a direct summand.

Now we prove our main theorem.

Theorem 5. A semiperfect ring R is a QF if and only if R has finite right uniform
dimension and every closed uniform submodule of R(w) is a direct summand.

Proof. (=) Suppose that semiperfect ring R is a QF-ring. Then every closed submodule
of R(w) is non-small, by [6, Theorem 24.20]. By Lemma 3, each e; R is uniform, hence R
has finite right uniform dimension and each closed uniform submodule of R(w) is a direct
suminand.
(«=) Conversely, suppose semiperfect ring I has finite right uniform dimension and
every closed uniform submodule of R(w) is a direct summand. We prove R is a QF-ring.
Since I is a semiperfect ring, R has the form (1), where each e; R is local.
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By the hypothesis, each closed uniform submodule of R(w) is a direct summand,
therefore it is non-small. By Lemma 3, we have each e; R is uniform, i.e F; is uniform for
every i € I and each ¢; R can not embedded properly in e; R, j = 1,2,... ,n.

We first show that the decomposition R(w) = @qeciFPa complements direct sum-
mands, i.e for each direct summand A of R(w), there is a subset I' of I such that
R(w) = A® R(I') (see 6, Chapter 1]).

Thus, we assume now that A is a direct summand of R(w), A # R(w). By Zorn’s
Lemma, there is a subset H of I which is maximal with respect to AN R(H) = 0.

Since each P, (a € I) is uniform, it follows that

(A R(H))N P, # 0 for every i € I.

Hence B = A& R(H) is essential in R(w). To complete the proof, we will show
that B = R(w).

Suppose on the contrary that B # R(w). Then there exists an element k € I such
that P, C B.

Since Py is uniform and B is essential in R(w), T'= PN B is an uniform submodule
of B with T # Pi. Let T* be a maximal essential extension of 7" in B.

Therefore, B is isomorphirm to a direct summand of R(w) ® R(w) = R(w). From
this it is to easy to see that B also has property as R(w), i.e, each closed unifom submodule
of B is a direct summand in B. On the otherhand, R(w) is a projective right K-module.
By (1, Theorem 27.11], T is isomorphirm to some ¢; R in {eiR, ...  enR}. Since R(w) =
P @ R(I\{k}) we have by modularity

P+ T* = P 11,

where T} = (P, + T*) N R(I\{k}).

If 7, = 0 we have P, + T* = P, so T™ is contained in P, and then by the
previous remark on e; R we must have P, = P* C B, a contradiction. From this we have
T\ # 0. Moreover, from the definition of T} we have T C R(I\{k}) and since T' C Py,
TNR(I\{k}) = 0. Since T* is a maximal essential extension of 7" in B, T*NR(I\{k}) =0,
it follows T3 NT* = 0.

Let M be the maximal submodule of P;. Because T* is not embedded in M,
T* @ T, C M &T,. In particular, the factor module (P & Ty)/T; is a local module with
the maximal submodule (M & Ty)/T:. Therefore

(T*®&T)/T\ = (P ®Th)/Th,
implying T* @ T, = P, ® T1. Hence P, + T =T* +T1. Now by modularity we have

BN (P, +T*)=(BNP)+T*=T+T"
=T*=Bn(T*aT))
=T"&® (BNT).

Consequently B NT, = 0, a contradiction to the fact that 77 # 0 and B is esstial
in R(w). Thus B = R(w), as desired.
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By [6, Theorem 2.25], every local direct summand of R(w) is a direct summand.
We use this to show below that every closed submodule of R(w) is a direct summand.

Let A be a non-zero submodule of R(w), with 0 # a € A. Then aR is a xyclic
submodule. Hence there exits a finite subset F' of I such that aR C @;ecpR;.

From this it follows that a/ has finite uniform dimension, so A contains a uniform
submodule.

Let @ be a non-zero closed submodule of R(w). Then @ contains a closed uniform
submodule U which is also closed in R(w). Hence U is a direct summand of R(w), by the
hypothesis.

Let

K = {A = @rex Uk| Uk is a uniform submodule of Q, A = ®re g Uk

is a local direct summand}.

By the above argument K # 0.

From this we may use Zorn’s Lemma to that X contains a maximal element L =
®rek Uk. Since L = @re g Ux € R(w) and every local direct summand is a direct summand,
L is a direct summand of R(w). Say R(w) = L & P for some submodule P of R(w).

By modularity, we have Q = L & (P N Q), lets P' = PN Q, clearly, P’ is closed
in Q. If P"# 0, P" contains a uniform direct summand V of R(w). Then it is clear that
L®V = (@rexUx) ®V is a direct summand of R(w) with L&V C @, a contradiction to
the maximality of L in K. Thus P’ = (0 and so @ = L is a direct summand of R(w). This
shows that I#(w) is CS. Consequently R is QF by [4, Corollary 2].
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