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NON-LINEAR STABILITY OF STIFFENED
LAMINATED COMPOSITE PLATES

Khuc Van Phu
Military Technical Academy

Abstract. This paper deals with the non-linear stability of the stiffened laniit
composite plate subjected to biaxial loads. Numerical results are presented for illuer g,
theoritical analysis of stiffened and unstiffened laminated composite plates.

Key words. Stiffened laminated composite plate, Shape memory alloys (SMA). sthity

1. Introduction

Stiffened laminated composite plates are used extensively in Naval, Aerospael,
tomobile applications and in Civil engineering.v.v... Today, analysis of linear larirg
composite plates has been studied by many authors. However, the analysis of no-le;
laminated composite plates has received comparatively little attention [3. 4, 5], sieq]
for analysis of non-lincar stiffened laminated composite plates and shells subjetc

compress bi-axial loads. This problem is studied in the present paper.

2. Governing equations of laminated plates

Let's consider a rectangular stiffened laminated composite plate, in which cab y
is a unidirectional composite material. This plate is subjected to a uniform comyei
on cach edge, with resultants P, and P, respectively (Figure 1), where P, and )
arbitrarily but as the plate is working in the elastic stage, so that every stress te
defined by every loading state respectively and doesn’t depend on the process yay
Thus, we can put

pr/ = ”‘Pr- (

The strain-displacement relations in the non-linear theory are of the form
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where w, v, w are the midplane displacements along the z, y and z axes respectively.
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Fig. 1
Integrating the stress-strain equations through the thickness of plate we obtain the

expressions for stress resultants and flexion moments:

Ny = (A1 + E1A1/s1)e, + Aragy + (E1A1/$1) 21k, + Pt /sy,
Ny = (Ass + BaAs/s2)e, + Avses + (BaAa/s3) 22k, + PS/s0,
Nzy = Ag6Vay, (3)
M, = (Dy; + E1 11 /s1)k, + D1k, + (E1A1/s1) 21641,
M, = (D32 + Eala/s2)ky + Digka + (E2A2/82) 20,
M., = Dggk

Ty
where

- Ay Dij (1,) = 1,2 and 6) are extending and bending stiftnesses of the plate
without stiffeners,

- By, Eo are the Young modulus of the longitudinal and transversal stiffeners,
respectively,
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- Ay, Ay are the section areas of the longitudinal and transversal stiffeners. respec-
tively,

_ Iy, I» are the inertial moments of cross-section of the longitudinal and transversal
stiffeners, respectively,

- $1. so are the distances between two longitudinal stiffeners and between two
transversal stiffeners, respectively,

- z1. 2o are the distances from the mid-plane to the centroids of the longitudinal
and transversal stiffeners, respectively,

- ;. Py are the recovery tensile force in the SMA wires

1

The equilibrinm equations of a plate according to [2] are
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Substituting (2) and (3) into (4) after some operations we obtain the equilibrinm

cquations of the laminated plate
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For a plate simply supported on all edges, the following boundary conditions are
imposed
+ At edges z =0 and ¢ = a
w=0, v=0 M, =0; (6)
+ Atedgesy=0andy =b
w=0, uvu=0 M,=0; (7)
The boundary conditions discussed here can be satisfied if the buckling mode shape

is represented by

MmrT | nmy
u = U,y €OS sin —= |
a .
. mmzr nmy .
p = V... sin Ccos . (8)
a b
. mTr . nwy
w = W,,,, sin sin ,
a )

where

- a, b edges of plate in r and y axial directions respectively,

- m, n : the numbers of halfwave in the x and y axial directions respectively.

Sul)stltutmg expressions (8) into the equilibrium equations (5) and applying the
Galerkin procednce yield the set of three algebraic equations with respect to the amplitudes
Unin, Vinns Wonn, where the first two cquations of this system arc linear algebraic equations

f()I' Umn- ‘/nm
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2 (9)
/, 4
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Getting from (9) expression U,,,,,, V,,,,, with respect to W, and substituting into

third equation of (5) we obtain a non-linear equation with respect to W,,,,.:

(If)” P (71()” o ((111 + /\Pl-)”,,m, = (), (l())
where a, are coetlicients which depend on the material, geometry and the buckling mode
shape,

2 2
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3 m*h 2 (mn)? nia
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From (10) we can express compression load with respect to W, as follows
Rr = LP({/V,”A,,) (11)

The lower buckling load of the plate can be analysed by the minimum of (W),

it means that:

or,
e = O (12)

The value of W,,,, corresponding to the lower buckling load is found from the

cquation (12) and then substituting into equation (11) we obtain lower buckling load P,.
We can determine the minimum critical buckling force P, nin by the way of varying

m, n and Py min — QPJ: min -

3. Numerical examples

Let’s consider a simply supported stifferned rectangular symmetrical composite
plate: a = 0.8 m; b = 0.5 m;
The materials of the plate have Thornel 300 graphite fibers and Narmco 5205 Ther-

mosetting Epoxy resin [5], the properties of these materials are
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Ey = 127.4GPa; E; = 13GPa; Gi3 = 6.4 GPa: vy» = 0.38;
- The plate has six layers: [45/ — 45/90/90/ — 45/45];
- Thickness of each layer: t = 0.5 mm;

- The laminate plate is reinforced by longitudinal and trainsversal stiffeners. which
W made of CPS, SMA and combined materials. In combined case: longitudinal and

taisverse stiffeners are SMA and CPS material respectively;

Table1. Effect of thickness of the plate (With o = 1)

Critical buckling loads P, (N/m)

h/b
Unstiffeners G5
421073 2.8155e+003  5.6321e+003  6.1798¢+008  2.2000c+009
6,0.107%  8.2084e+003  1.3027¢+004  6.1799¢+008  2.2000e¢+009
781077 1.8034e4+004  2.5441e+004  6.1800e+008  2.2000e-+009
9,6.107%  3.3622e4+004  4.4277e+004  6.1802e+008  2.2000e-+-009
1141077 5.6302¢+004  7.0943e¢+004  6.1805¢+008  2.2001c+009
[3.2.107%  8.7404¢+004  1.0684¢+005  6.1808¢+008  2.2001c+009
15,0.107%  1.2826e+005  1.5338¢+005  6.1813e4008  2.2001c-+009
16,8.107%  1.8019¢+005  2.1196e+005  6.1819¢+008  2.2002¢+009

- The stiffeners have the same sizes. as follows: by x hy = 4mm x6 mm;
- Diameter of SMA: wire is: d = 1.2 x 107 m;

- Spacing of longitudinal and transverse stiffeners are: s; — g3 = .1 m.

Table 2. Effect of orientations of the plate (With a = 1, CPS Stiffeners)

Critical buckling loads P, (N/m)

The stacking Sequence

30/-45/90/90/-45/30
0/90/0/0/90/0
45/-45/0/0-45/45
60/-45/30/30/-45 /60
45/-45/90/90/-45 /45
0/-45/90/90/-45 /0

0.93695e+-004
0.93939e+004
1.1554e+004
1.2680e+004
1.3027e+004
1.3599¢ 4004
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Table 3. Effect of transverse stiffeners on critical buckling loads

(With a = 1)

Spacing Critical buckling loads P, (N/m)

S

CPS Stiffeners  CPS + SMA Stiffeners  SMA Stiffeners
0.05 1.6967e+004 6.1822c+008 3.7822e+009
0.1 1.3027e+004 6.1819e+008 2.2002¢+009
0.15 1.1661e-+004 6.1818e+008 1.6728e+009
0.2 1.0967e+004 6.1318e+008 1.4092¢+4009
0.25 1.0547e+004 6.1817e-+008 1.2510e+009
0.3 1.0266e+004 6.1817e¢+008 1.1455¢+009
0.35 1.0064e+004 6.1817e+008 1.0702¢+009
0.4 9.9128¢+003 6.1817e+008 1.0137e+009
0.45 9.7947e+003 6.1817e¢+008 9.6972e+008
0.50 9.7000e+003 6.1817e+008 9.3456e+008

4. Conclusions

When considering non-linear geometry of laminated composite plate reinforcedb;
stiffeners, we obtain:

+ Critical force of CPS laminate plate not reinforced by stiffeners:
P, min = 8.2084e + 003N /m;
+ Critical force of CPS laminate plate reinforced by CPS stiffeners:
Py min = 1.3027¢ + 004N /m;
+ Critical force of CPS laminate plate reinforced by SMA and CPS stiffeners:
Py in = 6.1799¢ + 008N /m;
+ Critical force of CPS laminate plate reinforced by SMA stiffeners:
Py min = 2,2002e + 009N /m;

Critical force of the plate being reinforced by SMA stiffeners is higher than thet £
CPS stiffeners.

The plates, which are reinforced by SMA stiffeners work more stably than t1oe
of CPS stiffeners (Fig. 2) when geometrical parameters of plate are varied. In the ae
of plates under biaxial compression, the siffeners will influence strongly on the criicl
force(Fig. 3).
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Fig. 3. Effect of longitudinal stiffeners on critical buckling loads (with o = 1)

Depending on arranged layers of the plate, we can receive different critical buckling

orce. I this example, we received mininmun critical buckling force coressponding to the

ase [30/-45/90/90/-45/30].
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