VNU. JOURNAL OF SCIENCE, Mathematics - Physics. T.XX, N3 - 2004

B-REGULARITY OF HARTOGS DOMAINS
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Abstract. Let ) be a bounded set in C™" and ¢ : () — [—00,00) an upper semicontinu-
ous function on 2. Consider the Hartogs domain . = {(z,w) € 2xC : log lw|+e(z) <

0}. In this note, we give some necessary and sufficient conditions on B-regularity of SZ\F.
1. Introduction

Let  be a bounded domain in R™. An important question of (real) potential theory
s to ask whether every continuous function on €2 is the boundary values of some harmonic
finetion on . Using Perron’s method, it can be shown that the answer to this question
s atfirmative it and only if at every point z of 9€2, we can find a subharmonic function u
i € such that e . u(€) = 0 and lime_,, u(§) < 0,y # z on Q\ {z}. It is not hard to
<o that this characterization holds for every smoothly bounded domain in R™ (see [1]).

Now. it is natural to ask a similar problem in the complex setting. Namely, if €2 is
+ bounded domain in C”, under what conditions every continuous function f on d€2 can
he extended to a plurisubharmonic function in 2 and continuous on Q.

The Perron’s method breaks down as the envelope

upqo =sup{u(z) ue PSH(Q),limu |po< [}

may not he upper semicontinuous.

To solve this problem, Sibony in [3] introduced the following classes: B-regular
compact set and B-regular domain. Roughly speaking. on a B-regular compact set every
contitmons function is the uniform limit of continous plurisubharmonic functions on open
neiehbonrhioods of the compact set and B-regular domains are domains such that every
continons function on 982 can be extended continuously to € to a plurisubharmonic
function in €2, Under very mild conditions, Sibony showed that €2 is B-regular if oflis B
- regular.

The aim of this paper is to apply Sibony's results to study B - regularity of a
concrote class of domain. Namely, the class of Hartogs domains. Let us defined what
we wmean by Hartogs domains. Let € be a bounded domain in C" and ¢ a real valued,
hounded from below, upper semicontinuous function on Q. We set

Q, = {(z,w) : log|w| + ©(2) < 0}.

It is clear that the unit ball and polydisks in C"*! are Hartogs domainus. However, we will
sco later that the unit polydisk is not B-regular (the boundary contains analytic structure)
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while the unit ball is B-regular (being a strictly psendocouvex domain). Thus. the problem
of characterizing the B-regularity of Hartogs domains is of interest. In this paper. we give
siome necessary and sufficiént conditions to ensure that. The present paper consists of two
parts. In the first section, we give some definitions and facts abont B-regular compact
siets and B-regular domains. In the second section. we prove the following theorem which
i the main result of the paper

Theorem 1. Let 2 and @ as above. Assume that €. is B-regular. Then. we have:
i. o€ PSH()NC(Q).
1. ) is B-regular.

ii. lim p(z) = 400, V(¢ € d. Conversely if 2 and o satisfy (i), (ii) and (iii) and if

Z=2

the set

X = {2 € Q, ¢ is not strictly plurisubharmonic at =}

is locally B-regular then €, is B-regular.

We note that the condition on X can't remove. Indeed. if it is. we have a conn-
terexample (see example 3.2).

2. Preliminaries

We first give some facts about B-regular compact sets.

Definition 2.1 Let K be a compact subset of C". We say that u is a plurisubharmonic
function on K. denote by w € PSH(K) if the following two conditions are satisfied
i. ue C(K).
1. There exist a sequence of open neighbourhoods {U‘,}i’;1 of K and a sequence
{-u,_.]};‘:'1 such that u; € PSH(U;) and u is unif()rmly';1ppr()ximnrv(l by {u;} on
K

Definition 2.2. Let K be a compact set in C". A measure poon K is called a Jensen
measure with barveenter at z € K if pis Borel positive, regular measure supported on A

ard satishes

u(z) < / udp Yu € PSH(K).
JK

We denote by J. the set of Jensen measures with barycenter at =z,

Definition 2.3.

a) Let A be a compact subset of C". K is said to be B- regular it and only if for
every continnous function w on K is uniform approximated on A by continuons
plurisubharmonic functions on neighbourhoods of K.

h) A locally closed set X in C" is said to be locally B - regular it for every z € X
there is a closed neighbourhood V. such that X NV, is B - regular.

The following result, which is an easy consequence of a duality theorem due to
Elwards, gives us a connection between Jensen measure and the B regularity.
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Theorem 2.1. Let K be a compact in C". Then K is B regular if and onlv if J. = {3.}

for all = K. where. 0. Is the Dirac measure at z.

We give some examples of B-regnlar compact sets.
Example 2.1. If K is the unit circle then for every v € C(K), there is @ continuons oy

{|=] < 1}. harmonic in {|z| < 1}. such that « = 4 on K.

For cach + > 1. we let

i~

-

Clearly. ay is harmounic in {|:

< t} and @y =2 w as t tends to L So. the unit circle i«

B-regular compact.

Example 2.2. If compact set i is B-regular in C" then every compact subset K7 of K s
B-reenlar. Indeed. let « € C(K'). By the Tietze extension theorem, we can find v € C(R)
anch that @ = w on K. Because of B-regularity of I, there are open neighbourhoods {U}
of A and sequence {i; € PSH(U,)} whose limits is equal to @. Hence @; approximate .

Now. we pive some properties of B-regular compact sets based on [3].

Proposition 2.2.
a) I is B— regular if and only if —|z|* € PSH(K).

h) UM I, is B-regular if K, is B-regular for cach n.
We recall some definitions.

Definition 2.4. A bounded domain Q @ C" is said to be B-regular it for every finction
[ e C(082). there exists a function v € PSH(§2) N C(Q) such that u |po= f.

Definition 2.5.
a) A domain Q in C" is said to be pseudoconver if there exists a plurisubharmonic
exhanstion function v on §0 e {z: u(z) < ¢} is relatively compact in 2 for all vea)
{7
h) A domain € in C" is said to be hyperconver it there exist a negative plurisubhe-
monic exhaustion in . that is u € PSH(),u < 0 in 2 such that for every ¢ < ()
we have {u(z) < ¢} € L

Proposition 2.3. For a bounded domain we have the following implications: B— regn.

larity = hyperconvexity = psceudoconvexity. Moreover, the inverse implications are falie.

Proof. Assume that Q is a B— regular domain. Then there exists uw € PSH(Q) N (2
such that u(z) = —|z|? for z € 9. Clearly v(z) = u(z) + |z|?
haronic exhaustion for €. Next, if € is hyperconvex with a negative plurisubharmonic

18 a negative plurisub-

oxlianstion function u then —1/wu is a plurisubharmonic exhaustion for §2. Finally tac
bidisk is hyperconvex but not B regnlar and the Hartogs triangle {(z,w) : |z| < |w| < 1}
is pscudoconvex but not hyperconvex.

In [3]. we have relations between B-regular domains and B-regular compact sets
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Th:orem 2.4. If Q) is a bounded hyperconvex domain in C" and 0S) is B-regular then
i [-regular.

Conversely if 2 is a B-regular domain with C'!' boundary then 0S2 is B-regular.

Finally, let Q2 be a bounded domain in C",u € PSH (), u is called strictly plurisub-
parnenic at zo € 1 if we can find a neighbourhood V of zy such that u(z) = A|z|? + o(z)
«he A is some positive real and ¢(z) € PSH(V).

» Psoof of the main theorem

o

, . Necessary condition

i). First assume that 2, is B-regular. By Proposition 2.3 we have €2 is hypercon-
e~ 1 particular, it is pseudoconvex. So ¢ € PSH(§). We claim that ¢ € C(Q2). Oth-
(ist we can find zo € §2 such that lim___ ¢(2) < ¢(20). Hence, there exist a sequence
>} 28z = 2zp and nli_l*li ©(zn) = ¢ < p(20), where ¢ = lim____ ¢(z). We can suppose
nt« < ¥(z0)—€ where e > 0 is sufficiently small. Then {(zp, w) : |w| < e7#l20)=¢} C 0Q,.
3y 1w ¢(zn) = ¢ < @(z0), we have {(z,, w) € AxC: |w| = e ¥~} C Q. for n large

R Tl
0
u(z,w) := {

ant

™

= 20, |lu| = e ¥Pl20)—¢€

Lh Set
1

™

= 2g, =10

y ait using Tietze theorem we extend u to a continuous function on 0§2,. By B-regularity
6 chere exists v € PSH({l,) N C(Q,) such that v = u on 9Q,. In particular.
p(nV £ max v(z,, (). Let n tends to infinity, note that v is continuous. we get
AT [l=emPlzn)—e

, otracdiction.

i). We have 0§2x {0} C 0f2,. Let u be an arbitrary continuous function on d€2. Put
o0, ) = u(z),z € d2. Then v is a continuous function on d§2,. By the B-regularity of
() w can find v € PSH(§2,) N C(§2;) such that v = uwon 08 x {0}. Thus, u(z) = 9(z,0)
. otous on §), plurisubharmonic in 2, @ coincides with u(z) on 9€2. This implies €
(o3-cgular.

ii). Suppose that there is ( € 99 satisfies lim p(z) < co. Let
==(

Iy = {(g’“)) . |‘(U| = (3_1:11_“;%“. ~,C(:)}‘

pisclear that D C 0€,. We choose a function u = 0 on D, u(¢,0) = 1, and extend u
catnity on 9. By B-regularity of €2, there is v € PSH(§2,)NC(§1,) such that v = u
o 1L{(¢,0)}. Using similar argument as in proof of i) and maximal principle. we get a
(inaudi(tti(_)n.

2 Sufficient condition

set 2 and ¢ be as above and we have to show that Q_ is B— regular. Since
Bresular, using Proposition 2.3, it implies that € is hyperconvex. Hence we find a
jepie plurisubhamonic function w in € such that v = 0 on 0§). Set v(z,w) = u(z).

ne t 15 a plurisubharmonic function in Q0 ,v = 0 on {(z,w) € JQ, : z € I} and
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i(zow) = max(o(z, w),log [w] + ¢(2)) is a negative plurisubharmounic exhiaustion fiy; ”
i Q- and @ = 0 on 2. This shows that €2, is hyperconvex. We claim that g
B-regular. so Q- is also B-regular. by Theorem 2.4. "
Let p = (29, w0) € 09, be a arbitrary boundary point.

It 2y € J§2. by lim ¢(2) = co. we have wy = 0. Because of B-regularity of {2,

=220 ‘(]l

find v e PSH(Q) N C(Q) such that u(z) = 0 and v < 0 on Q\ {z}. Put v(z,w) ()
[t is clear that v(z, w) is a strong plurisubharmonic barrier at (z0, wy).

If o & J9 then loglwg| + ¢(z9) = 0. Note that ¢ € C(Q), there is > 0 suey ),

B(p,r)nN afl, = {(z,w) € ﬁ(p, r) :log |w| + ¢(z) = 0}.

We claim that B(p,r) NoQ, is B-regular. So B(p,r) N, is B-regular. by Pm};,_\;i““
2.3. So Q. is locally B-regular.

Assume that (2, w) € A, where A is a compact subset of B(p, r)Nds., ﬂ(,'i)w\r _
0. 7 is projection from C**! to C”, 7(z,w) = z. Then @(z) is strictly plurisnhlulnnu'
at = we can find a swall 11("1;;11])()111'110()([}/’ nf_'_: and ¢ (z) € PSH(V) such that o) =
A2 + (2). A is soe positive real. On AN (V x C), we have

0 = p(2) + loglw| = P(z) + A z|? + log|w]|

2

This implies that ¢(z) + loglw| = =Alz z|? € PSH(AN (V ™)
o . . E . . . . . J/ "
Using Proposition 1.3 in [3]. we obtain a strong plurisubharmonie barrier at (z,w, 4,

Consequenly. —A

S
coucludes that 4 is B-regular.
Next. if (2, w) € A, where A is an arbitrary compact subset of B(p, 7)NosY,, (1) -

V. We use following lemma of Poletsky (2]

Lemma 3.1. Suppose that K is a compact set in an open set V' such that theeg ;

)
D F

continuons plurisubharmonic function w on V- equal to zero on K and greater than g a
V\ L. If v is a plurisubharmonic function defined on a neighbourhood W C 'V O,
Lonnded below on K then there is a plurisubharmonic function © on V- which Ci g

with v on K.

Using Poletsky's lemma, we prove the following
Lemma 3.2. Let X be a compact set 11 C" ! and m,, m be the projection

wy t O s O (2, 0] = =,

7o : C"* — C, ma(2, w) = w.

such that 0 & ma(X). Assume that Y = m(X) is B— regular and for every y € Y\-l'{”
is circle. Then X is B-regular.

Proof. Suppose that a € X and p € J,(X) is an arbitrary Jensen measure with bare,.
a. For every v € PSH(m (X)), we have vom € PSH(X). Hence,

v(my(a)) < /u(ﬂl(.z:))d;.'.(.r).

X
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‘ﬁmtion of image measure,

]U(rrl( Ydp(x fud T1xld

X i (X)

but b

pophd jnage measure 7,4 is also Jensen measure with barycenter 7y (a) on m1(X). By
101

X . B- regular, we have my,1t = 0r,(4), Where 0 denotes the Dirac measure at m1(a).
(A"

i jls support on 7, H(m(a)) N X. ;\ote that the circle 77 ' (m1(a)) N X \ {0} satifies
L

)
,plhesis of lemma 3.1 with u = (E—L’i — 1) . Using Poletsky’ lemma, and choose a

the : - ; : -
. egative subharmonic function v on neighbourhood of circle such that v{a) = 0,

‘*Uul «tend v to a subharmonic function @ on C\ {0}. Since 0 € m3(X) then we may
qat© € PSH(X). Thus

0 =v(a) = dle) £ /M,u, < 0.

X

we (€
assu e

c J(X), where J(X) is Jensen boundary of X due to [3]. Using Proposition 1.3
. ottain that X is B-regular. The proof is finished.
4w, we continue the proof of the main theorem.

.« (bvious that A C {(z,w) € @ x C : log|lw| +¢(z) = 0}. Consider the projection
L Then 7(A) is B-regular (because X is locally B-regular) and every fibre

) € 4} is circle. An application of Lemma 3.2 we conclude that A is B-regular.

Her

i |

T
T
nee B(p,r)N JS), is union of all compact sets of the froms A and 4 by a Si-
. ult see Proposition 2.2). B(p,7)N JQ, is B-regular. So, by applying a result of
i n\"‘ tave B(p,r) N, is B-regular.
GiH

.a'e going to apply this theorem to obtain an another class of B regular domains.

Lledl. Let A be a unit disc in C and &' be compact subset of a circle in 4. From

E'“" . _we known that A’ is B-regular in C. We want to find ¢ € SH(A)NC(A) such
xcon OA and X = {z,p is not strict plurisubharmonic at z} C A’. So we have
Tllk' 4tigs domain and is B-regular. Let ¢ be a continuous non negative function on
21 | vatishes precisely on A'. Put ¢ = Ga * ¢ where * denote convolution operator
5 areen function of A or is fundamental solution of homogenconaly Dirichlet
o mA\ A’ Then we have ¢ € SH(A) satisfying A@ = ¢. It is easy to look for
vlich is strictly subharmonic on A, (z) = oo on 9A (e.g. (z) = l—_ll—_Tf + |2[?).

. X @, ). Then we have our desired function.

pl,lg 2. Let Q= {]z| < 1}, p € SH(2) N C(Q)) such that
p=0o0n|z| < 57
liné ©p(z) = +oo for every £ € Of.

st XD {Iz] < 3} and hence X is not locally B-regular. It is clear that the
;(,)15 ). 11), iii) are satified but €, is not B-regular. Indeed,

. 1
88, D {(2,w) : |2]| < 5,‘11:] = L}
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|

s0 082 have analytic structure, consequently, (0, is not B-regular. (We choose ¢ o
L noys
function u=1on {z = 0, |w| = 1}, u=0 on {|z| = §,|w| = 1} and extend 1 to a ¢ fous
: . ‘ . S i . . . m .
function on 0§2,. Using similar argument as in proof of i) we get a contracdictj, S;“”“
3, s
P

B-regular).
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