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EXTENSION OF A RESULT OF HUNEKE AND MILLER

Dam Van Nhi, Luu Ba Thang

Pedagogical University Ha Noi, Vietnam

Abstract. Let k be the ground field k and ¢ = (zg,... ,Zn) be indeterminates. Let [
be a graded ideal of k[z]. In [2], [3] there are formulas to determine the Betti numbers and
multiplicity of R/I. Now we want to give an extension and a new simple proof about a

result of Huneke and Miller and we also consider the algebra with minimal multiplicity.!
[ntroduction

Let R = k[xy, ... ,x,] be the polynomial ring over the field k. Let I be a graded ideal
of R. R/I is said to have a pure resolution of type (di, ... ,dp) if its minimal resolution
has the form

ly £
0— P R(-d,) — - — PR(=d1) — R— R[] — 0, d <--- < d,.

i=1 7=l

In 2] Herzog and Kiil have given a formul to determine the Betti numbers of R/I. The
multiplicity of R/I is given by Huneke and Miller, see [3]. This paper presents an extension
and a new simple proof about a result of Huneke and Miller and we also consider the
algebra with minimal multiplicity.

1. Extension of a Huneke and Miller’s result

We collect here a number of more or less standard definitions, results and notations
of graded modules.

Let R = &,>0R; be a graded ring, where Ry is the ground-field k, and M = @iz M;
a finitely generated graded R-module of dimension d. For evry 4 € Z, we denote by M (i) the
eraded R-module with coincides with M as the underlying R-module and whose grading
is given by M(i); = M,y; for all j € Z. Set ¢(M,) = dimg M;. Let h(M,t) and hp(z)
denote the Hilbert functions and the Hilbert series of M, which are defined to be

h(M,t) = ¢(M,) for all t € Z,
ha(z) =Y h(M,t)2".
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It is well known that h(M,t) = Z;’;é(—l)d"l_jed_l_j (t?) with e; € Z and Vt >> 0.

The multiplicity of M is defined as follows

eo  ifd>0,

Cmnz{emn ifd—0.

Suppose that 0 — EB?’ZI R(-dp;) — -+ — EB??__I R(—dp;) — M — O is a

minimal graded free resolution of M. Since hg(z) =3 1oy (t“;’i_ll) 2F = (1_1;),1 and
P . &; p ‘ ¢
har(2) = Y (1)' D heay(2) =Y (-1)'(D 2% hg(2))
1=0 J=1 1=0 4=1
1 < - 9(2)
- 1} 4ii) = ith k
i 2 )(;z ) = G- e ith g(e) € ki,

there is (1 — 2)""%g(2) = Zfzo(—l)i(2§;l 2%3) = Sp(2), see [1].

Theorem 1.1. [2, Corollary 4.1.14] If M is finitely generated graded R-module of dimen-
sion d, then

(_1)11—~d51(\';—d+j)(1)

(—1=dgie~(1)
(n—d+j)! '

(n—d)!

€5 =

and e(M) =

Let M be a finitely generated graded R-module. M is said to have a pure resolution
of type (do,d1, ... ,dp) if its minimal resolution has the form

Zp {51 KO
0— P R(-dy) — - — P R(—=d1) — P R(=do) — M — 0, do < -+ < d,.
i=1 =1 7=l

The following theorem shows that the Betti numbers and multiplicity of the Cohen-
Macaulay module M are completely determined by the twists d; and Betti number €.

Theorem 1.2. Let M be a finitely generated graded R-module of dimension d. If M is a
Cohen-Macaulay module and has a pure resolution of type (dg,dy, ... ,d,), then

o [T7=1(do — dj) (=1)Pep ¥
; — d=1...,0 €M)= Il(do—(l-).
H?:O,j#i(di — dj) p! ey ’

b= (-1)

Proof. Since M is a Cohen-Macaulay module, there is p = n—d and Spr(z) = (1—2)Pg(z) =
P o(—=1)";z%. Since S};})(l) = (0 for j = 0,1,:+- ;p— 1, and Sy(1) =
the following system of linear equations:

g(1), we obtain

Iijzo("l)igi =0,
> imo(=1)'lidi(di = 1)...(di = j +1) =0,
J=1eer Pl

k1) Gd(d; — 1) ... (d; ~ p+ 1) = g(1).
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Set y, = (—1)"4;, i = 0,...,p. Upon simple computation, we get
f o¥i =0,
Id] = [},
(4)§ ==0¥
]—1“'&—1
i=0 yldp = g(1).
Consider the following equation
g9(1) _ o ) T2 L
(z—do)(x—di) - (x—dp) x—do z—di T—do T—dp
Then (B): g(1) = zo(z —d1) - (x—dp) + T1(x —do)(z —d2) - (x—dp) +--- + Fpla ~
do)(x —dy)-(x —dp_1). Forz =dog,z=4d1, T = dp, it can be verified that
_ 9(1)
[ %0 = Go=dr)-(do—dp)
— 9(1)
T1 = [—do) (di—dp)°
() 4, = 9(1)
S (do—do)(d2—d1) -+ (d2—dp)’
I g(1
\ T T Wy=do)dp—di) - (dp—dp—1)”
The tth power sum and the tth elementary symmetric polynomial of do,...,dp will be

denoed by M, = dfj +
identity E, = B + &;EW,
ZP
i=0 ac,—df =0,
j=0,-,p—1,
.’L’()dg + l‘ld?f +

(D)

From (A),(C) and (D) it follows that y; = z;,1 =0, ..

there are

-+ d}, and E; = Ey(do, ...

,dp). Set EY = (E;)4,=o. Use the

and mathematical induction to caculate the coefficients of
,r, from the above equation (B) it follows that

o+ zpdh = g(1).

., p. Since g(1) = zo [T}—, (do — d;),

G TTP_ (do — d;
Ez':(_l)1 OPHJ_I( - J) i=1,...,p.
szo,j;éi(di - dj)
Consider
vle—1)-(z-p+1) 20 2z
— e :> _1 I _ 1 i
(.’E—do)--'(;x—dp) T — do .’L‘—d1+ +£L‘—dp z(z ) (z—p+ )
-:U(J;—dl)--~(;1:—d,,)+zl(m—do)(z—d2)~--(x—dp)+---+zp(:1:—d0)~-(m—dp_1).

There is zo + -+ + zp = 1 and for z =do, -+~

, & = dp we obtain

__ do(do—1)---(do—p+1)

(do—d1)--(do

__dp) )

— d](dl—l)“'(dl —p+1)

(d1—do)--(d1

............................

_dp) )

—1)-(dp—p+1)

~(dp—dp-1)°
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Since e(M) = M therefore

(—1)*’3&’;’m (-1 &

e(M) = D! T (=)'ldi(di = 1)+ (di —p + 1)
' ' i=0
g()di(di = 1) - (d —p+1)y  (=1Pg{l)
Z PN A T D DR
(-*1)”9(1) -1 )Pfo(do —dy)do —dz) - -(do — d,)
N p! N p! ’

Thus e(M) = p,’“’ H’,)_l dy — d;).
Now we want to consider the case the finitely generated graded R-module M is not
Cohen-Macaulay. In this case we have p = proj.dimM > n —dim M = n — d.

Theorem 1.3. Let M be a finitely generated graded R-module of dimension d. If M
has a pure resolution of type (do,dy,... ,d,), then all ¢; are completely determined by

(Z(J} ceey (/;)—n+d-

Proof. Set y; = (=1)"¢, for ¢ = 0,...,p. By assumption, direct computation shows that
( P yl = 0
'5:0 yidi =0,
9 ]: 17 7n_d_1a
—d+h
D i—o Yid] = g(h)(l)v
( h=0....,p—n+d.
Denote the summation of all products of n-h factors from do, ... ,di—1,di41,... ,d, by s,

aud set a, = ¢!")(1). By an argument analogous to that used for the proof of Theorem
1.2, we get the solution

Yo = I—["—JO_C—[—Zh n— dahg()ha
Yi = m Zh:n—d AhSih,
t=1,...,P.

hn dahSOh——fOH 1(do — dj),
Zh:n—dahb(-)h =\~ Ei Hj:O (i - J)’

i=1,... ,p—n+d.
IFrom this system we can determine all ¢; when £, . .. +p—n+d are given.
Let I be a homogencous ideal of R. R/I has a pure resolution of type (dy,... ,d,)
with its minimal resolution of the form

Thus

O——)@R ) =% - -—>@R —di)) — R— R/I — 0, d) < --- < d,,.
j=1
The followmg result was proved by Huneke and Miller using residues theory of complex
function, see [3]. As an immediate consequence of Theorem 1.2 we now want to give an
another simiple proof.
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Corollary 1.4. [3, Theorem 1.2] Let I be a homogeneous ideal of R. If R/I is Cohen-
Macaulay and has a pure resolution of type (di,... ,dp), then

(/‘-):(—1)1%-1]?—‘[((1-{]—"(1'.) e(R/I) = p]Hd

i#]

Proof. Here £y = 1,dy = 0. By Theorem 1.2, we have g(1) = d;...d,. Hence {; =

(wl).JHHl#J(d—lde)am e(R/I) = nTx;ﬁ.

Note that Theorem 1.2 is as considered an extension of Corollary 1.4.

Remark 1.5. If we present (z —1)(x —2)---(z —p+ 1) =aP — s12P 1 + 502”72 — - +
(—=1)P~ts,_1z, then

(—1)lidi(di — 1)+ (di —p + 1) = (—1)&[dP — 5187 + 52d0 ™% — -+ (=1)P 7 sp1di].
Since Y F_, y,,;d{ =0,7=1,...,p— 1, and since dy = 0, we obtain

(=1)"~ dS" d+J)(1) f= l)pS(P+J)( 1)

R/I R/I
ey = — by Theorem 1.1
: (n—d+)! e+t
(§)+}|Z—1€d(d—l) (di-p—j+1)
Gl i( 1)idi(d; — 1) (di —p—3j +1)
(g
1 2 .
T+ Z( )P dy.

In particular, for j = 0 there is e(R/I) = ﬁ P_(=1)P*¢;d?, (formula of Peskine-Szpiro),
see [3].

Assume that I # 0 is a homogeneous ideal of R. Denote by v(R/I) = h(R/I;1) the
embedding dimension of R/I. Abhyankar proved that if R/I is Cohen-Macaulay then

v(R/I) —dim R/I +10 e(R/I).

Recall that a Cohen-Macaulay local ring R/I is called a ring with minimal multiplicity if
o(R/I) — dim R/T + 1 = e(R/I). We will say that R/I has h-linear resolution if R/I has
the pure resolution of type (h,h+1,... ,h+p—1).

Proposition 1.6. Assume that the ring R/I is Cohen-Macaulay and has a h-linear res-
olution of type (h,h +1,--- ,h +p—1),p=n—dimR/I. R/I is the ring with minimal
multiplicity if and only if h =1 or h = 2.

Proof. Since R is the Cohen-Macaulay ring, there is ht(I) = n — dim R/I = p by b
Corollary 2.1.4]. Because R/I has a h-linear resolution of type (h,h+1,--- A +p— 1),
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tperefore I; = 0 for all j < h and dimg I), = (h+,‘:_1). If h =1, then e(R/I) = 5 =1 and

o(R/) = ("_lIH) —dimg I; = n — p. Hence R/I is the ring with minimal multiplicity,
bHecause

v(R/I)—dimR/I+1=(n—p)—(n—p)+1=e(R/I).

gy Theorem 1.2, we have

e(R/1) = h(h+1)--2-)!(h+p—1) > 2.3.~-%)(!p+1) et

_ (”“1“)_(n—p)+1=v(R/1)—dimR/I+1.

Also, in the case h > 2, the Cohen-Macaulay local ring R/I is a ring with minimal
qultiplicity if and only if A = 2. Hence, the Cohen-Macaulay ring R/I, which has a h-
Jjrcar resolution of type (h,h+1,--- ;h+p—1),p=n—dim R/I, is the ring with minimal
pultiplicity if and only if A =1 or h = 2.
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