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SPACES WITH STAR-COUNTABLE QUASI-K-NETWORKS,
LOCALLY COUNTABLE QUASI-A-NETWORKS

Tran Van An

Vinh University, Nehe An

Abstract. In this paper, we introduce some kinds of network. and investigate thie
lationships between them. Also. it is proved that the pseudo-open s-image of a Freey o

space having a locally countable k-network is a Frechet space so doing.

1. Introduction

Spaces having star-countable A-networks, locally countable k-networks have coy
sidered by Y. Ikeda and Y. Tanaka in [2]. In that paper, the authors have studied t}
relationships among spaces with star-conntable k-networks. spaces with locally connt
able A-networks.  They have presented characterizations of spaces with star-countah]q
L-networks, and spaces with star-countable closed k-networks. © Also. the authors Lay
<hown that for some appropriate conditions, spaces with star-countable k-networks (¢,
spaces with locally countable k-networks) are preserved by closed maps .

In this paper we deal with a spaces having star-conntable quasi-k-networks. loall
conntable gquasi-k-networks, star-conntable k-networks. and locally countable k-netwarky
consider relationships among these notions. and prove that a Frechet space with a loclly

comntable k-network is preserved by psendo-open s-map.
We assine that spaces are regular T, and maps are continuous and onto.

1.1. Definition. Lect X be a topological space, and let P be a cover of X.

P is a h-network. if whenever K C U with K compact and U open in X, he
N ¢ UF c U for a certain finite collection F C P.

P is a strong-k-network. if whenerver ) C U with K is compact and U is opay i
Y then there is a finite colletion F € P such that for every F € F there exists a chse
<ot C'(F) C F satistying K C U C{Fy cUF U,

FeF
1.2. Definition. Let P be a cover of X,

P is called a quasi-k-network, it whenever & ¢ U with K is countably conpacy
and U is open in X, then K CUF C U fora cortain finite collection F C P.

P is called a strong-quasi-k-nctwork. if whenever K C U with A is counial)
compact P.and U is open in X then there is a finite colletion F C P such that for «ey
F e F thoere oxists a closed set C(F) C F satistying K C U CLE) cuF & U

FeF
1.3. Definition. A cover P of X is said to be locally countable, if for every # € X Loy
is a neiehbourhood V' oof x such that V' meets only countable many members of P.
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A cover P of X is said to be point-countable, if every x € X is in at most countably
many elements of P.

P is said to be star-countable, if every P € P meets only countable many members
of P.

A cover P is said to be closed (open). it every set P € P is closed (respectively.
open).

1.4. Definition. A topological space X is said to be determined by a cover P (or X Las
the weak topology with respect to P). if a set E C X is open (closed) in X if and ouly if
E NP is open (resp. closed) in P for every P € P.

A topological space X is called a k-space, if X is determined by the cover consisting
of all compact subsets of X.

A topological space X is called a quasi-k-space. if X is determined by the cover
consisting of all countably compact subsets of X.

A topological space X is said to be Frechet, if for every A ¢ X and o € A there is
a sequence {r,} € A such that x,, — .

1.5. Lemma. Let X be a topological space, and Y C X. If X has locally countable
quasi-k-network (k-network), then so does Y.
Proof. It directly follows from the definition.

1.6. Lemma. [3, Lemma 1.1] Let P be a star-countable cover of X. Then we have
1. X is a disjoint union of {X, :a € A}, where each X, is a countable union of
clements of P.
2. Af X s determined by P, then X is the topological sum of the collection {X,, : o €
A} in (1), and the cover P s locally countable.

1.7. Proposition. [3. Proposition 1.7] Let X be a Frechet space. Then the following are
cquivalent
a. X has a star-countable closed k-network;

b. X s a locally separable space with a point-countable k-network.

1.8. Lemma. [6, Covollary 2.4] Every k-space with a star-countable k-nctwork is a
paracompact o-space.

1.9. Theorem Balogh. (2, Theorem 4.1 Every countably compact space with point-
countable quasi-k-network (or k-network) is metrizable (and thus, compact).

2. The main results

Firstly we present some relationships between a locally countable quasi-k-network.
a locally countable strong-quasi-k-network, a locally countable closed quasi-k-network, a

locally conntable A-network. and a locally conntable closed k-network.

2.1. Theorem. Lect X be a topological space. Then the following are equivalent
a. X has a locally countable strong-quasi-k-network:;
h. X has a locally countable quasi-k-network:;

c. X has alocally countable closed quasi-k-network:
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. X has a locally countable k-network;

c. X has a locally countable closed k-network.
Proof. (a) = (b) is obvious. |

(h) = (¢) Let P be a locally conntable quasi-k-network. Denote Po= P :

I’ € P'Y. Then P is a locally countable closed quasi-k-network.  Indeed. let A be a
countably compact subset. and U an open subset such that K C U. Since X has a
locally conntable quasi-k-network. by Lemma 1.5 R also has a locally conutable ¢uasi-k-
network. From Theorem Balogh., it follows that A is compact. For every @ € K. denote
11", an open neighbourhood of & such that r € W, C W, c U. Then the collection
{W, :re K} covers K. As K is compact, there exists a finite subcollection Wy, ... Wy

so that K C U W,. Because P’ is a quasi-k-network. there is a finite collection F C P’
i==1

such that XK' C UF C U W,. It implies that K c J{P: P € F} C U W, cU.
i=1 i=1

[t is casily seen that if V. 1s an open neighbourhood of x such that V, NP # ¢ for
some € Pothen V, NP # ¢. Thus, from the local countablity of the collection P’ L it
follows that the collection P is so locally countable.

(¢) = (1) is obvious.

() = (¢) Assime P is a locally countable k-network. Let P = {P:PeP} Then
P is a locally countable closed A-network. In fact, suppose that A 1s compact and U 18 an
auy open such that K € U. For every @ € K by W, we denote an open neighbourhood
of + such that + € W, ¢ W, ¢ U . Then the collection {W, : x € K’} covers K. Becanse

K is compact, there is a finite collection Wy, ..., Wy so that K C U W,. Since P is a
=1

quasi-k-network. there exists a finite collection 7 C P’ such that KT uWF U wi. It
1=
follows that K ¢ |J{P: P € F} C UW, cU.
ja=l

By using the method as in the proof of implication (b) = (¢). it follows that P is
a locally conntable.

(¢) = (a) Asswe that X has a locally countable closed k-network P. Then by
Theorem Balogh. a subset A of X is countably compact it and only if A is compact.

Therefore follows that P is a locally countable quasi-k-network of X

2.2. Lemma. Lect X be a space having a locally countable quasi-k-network. Then
1. For coery r € X there is a neighbourhood Vowith the following propertics
() Every open set W C V is a countable union of closed subscts;
(b) V is Lindelof.
2. Bveryr € X is a Gs-set.
Proof. 1) Assume that P’ is a locally countable quasi-k-network. By the proof of Theorem
2.1, the collection P = {P : P € P’} is a locally countable closed quasi-k-network. Hence
for every @ € X there is an open neighbourhood V' of such that V meets only conntable
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many clements of Po Denote P, = {Q € P C V}. It follows that P, is a conutable
collection and V = U{Q : Q € P, }. Thus (a) is proved.

Let U be an any open cover of V. For every y € V there exists U € Y such that
y € U. Since P is a locally countable quasi-k-network in X, there is a () € P satistying
yeQ CUNV. As shown above, the collection P, = {Q € P : Q C V} is countable. and
V=U{Q:Q € P.,}. For each Q € P,, put an Uy € U such that Q C Uy. Then the
family U, = {Ugp € U : Q € P, } is a countable cover of V. Hence V' is Lindelof.

2) Let & be an any point in X. By assertion (1) there exists a neighbonrhood

M

M

Voot oo such that every open subset of Vois a countable union of closed subsets, Hence.

we lave V A\ {r} = U E;.. where E) is closed for cach k = 1,2,.... It follows that
k=1
[ = "\ i Q0 3 1< o e
{r} = () (V\ Ep). Thus. the set {r} is a Gs-set,
h=1

We now consider some relationships between a locally countable gquasi-A-network.
a o-locally Hnite closed Lindelot quasi-A-network, a star-countable closed quasi-k-network
and a star-countable quasi-k-network.

2.3. Theorem. For an any topplogical space X . and the following conditions (a) — (d)
we have  (a) or (b) = (¢) = (d).

a. X has a locally countable quasi-k-network:;

bh. X has a o-locally finite closed Lindelof quasi-k-network;

c. X has a star-countable closed quasi-k-nctwork;

d. X has a star-countable quasi-k-network.

Proof. (b)) = (¢). Assume that P = U P, is a o-locally finite closed Lindelof ¢uasi-
n=1

f-nctwork. It s only sufficient to prove that P ois a star-conntable,  Indeed. put any
P’ € P. Since P is o-locally finite. for every o € . and for every n € IN there exists
a neighbourhood V' of @ such that V' meets only finite many elements (@ € P, The
collection {V" - r € P} is a cover of PP, Because I? is Lindelof. there exists a countable
subeollection {V! } | covering 2. As every set V' meets only finite many elements
() € P,. I meets ouly conntable many elements Q € P,,. Thus 2 meets only conntable
many elements of P.
(¢} = (d) is trivial.

Now we prove that (a) = (¢). Assume that P’ is a locally countable ¢uasi-A-
network. By the proof of Theorem 2.1, the collection P = {P : P € P’} is a locally
conntable closed guasi-k-network. Hence for every » € X there is an open neighbourhood
V. of & such that V, meets only countable many elements of P. By Lennna 2.2 Vs
Lindelof. Put P* = {P € P: I is contained in V, for some o € X}, Then P is a locally
conntable closed Lindelof quasi-A-network.

In fact. since P* is a subcollection of the locally conutable collection P P* also is
locally conmtable. Moreover. every ) € P* is a closed subset of a certain Lindelof space
17, henee Q is Lindelof. Now we prove that P* is a quasi-k-network. Let A he countably
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compact. and U an any open set such that K C U. Since X has a locally conntable closed
quasi-k-network P, by Theorem Balogh K is compact. For any © € K. by V., we denote an
open neighbourhood of @ such that Vi meets only conntable elements of P, and W, an open

neighbonrhood of & such that @ € W, C W, Cc V,NU. The collection {W, : x € K} is an
open cover of A B(‘(‘mm‘ K is compact, there exists a finite subcollection H AR |

such that A U W, . For every i = 1,...,m. put K; = KNW,, . Then K, is an

=1
comutably compact set in V., i = 1,... ,m. Since P is a locally countable closed gnasi-k-
network. for every ¢ = 1,... ,m there is a finite collection A8 1 =155+ n;} C P such
n,
that K'; C U Py i Vo, Thus the collection F = {Py t1i=1;,..., M j=1,... n;} CP”
1=1

is a finite subcollection of P* satistying K C UF C U.

Since every (Q € P* is Lindelof, P* is a locally countable quasi-k-network. by using
the argument presented in the proof of the implication (b) = (¢) it follows that P* is
star-countable.

2.4. Corollary. If X is a k-space, then the following are cquivalent

a. X has a locally countable quasi-k-network;

b. X has a locally countable k-network:;
¢. X has a star-countable closed quasi-k-network;
d. X has a star-countable closed k-network;
¢, X has a o-locally finite closed Lindelof quasi-k-network;
f. X has a a-locally finite Lindelof quasi-k-network.
Proof. (a) & (b) It follows from Theorem 2.1.

(a) = (¢) It implies from Theorem 2.3.

(¢) = (d) is obvious.

(d) = (¢) Assumc that X has a star-countable closed k-network P. Denote
P* a collection of all finite unions of elements in P. Then P~ is also a star- countable
closed k-network. Since X has a star-countable closed k-network. by Theorem Balogh
cvery countably compact subscet of X is contained in a certain element of P*. Henceo by
assiption X being a k-space it follows that X is determined hv P*. By Lenminma 1.6(a).

X being a topological sum of {X, : « € A}, where X, = U P, , D, € P forall
n=1
a € A.n e IN. and P* is star-countable.

It is similar to the proof of the implication (a) = (¢) in Theorem 2.3, it follows that
P, is Lindelof tor all « € A,n € IV,

& &
Pt Py= AP, i€ A}. Then we get P* = U P, with P, is a locally finite
n=1
collection for all n € IN.

(¢) = (f) 1is trivial.

(f) = (a) Assume that X is a k-space having a a-locally finite Lindelof (uasi-A-
network P. By using the proof presented in the implication (b) = (¢) in Theorem 2.3 it
follows that P is star-countable. As in the proof of (d) = (¢) we get that X is determined
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by P. Therclore, by applying Theorem 1.6(b) it follows that P is locally countable.

2.5. Definition. A space X is said to be w-compact if every countable subset of X have
an accumulation point.

2.6. Theorem. Let X be a space. Then the following are equivalent
a. X s compact metric;
bh. X
c. X s an w-compact first-countable space having a star-countable quasi-k-network;
d. X

Proof.

s an w-compact space having a locally countable quasi-k-network;

ts a countably compact space having a point-countable quasi-k-network.
(a) = (b) 1s obvious.
(b) = (). It follows from Theorem 2.3 that X has a star-countable (uasi-k-network.
Put any € X. Because X has a locally countable quasi-k-network, by Lemma 2.2 every
poiut of X is a Gy-set. Hence there exists a sequence of closed neighbourhioods {V,,} of

S
o such that Vi, € V, for all n > 1, and {z} = ﬂ V... We shall prove that for every
=1

neighbourhood U of & there exists V,, such that V,,_ C U. Conversely., assume V,, ¢ U
for all . > 1. Then for every n > 1 there exists x,, € V,, such that x,, € U. Since X is
w-compact. the set {&,, : n > 1} have an accunulation point y. Because x,, € V,, for all

NE
m = n. and V,, is closed, it nnplies that ¢y € V), for all n > 1. It follows that y € ﬂ V.

n=1

Hence y = o€ U. On the other hand, as y is an accumulation point of {u,, :n > 1}.
there exists ., € U. This is contrary to the choosing the sequence {r,} so that r, ¢ U
for all n = 1. Thus the collection {V,,} is a countable neighbourhood base of v and X is
first-countable.

(¢) = (d). It follows from that a first-countable w-compact space is conntably
compact. and a star-countable quasi-k-network is a point-countable guasi-k-uetwork.

(d) = (a). It follows from Theorem Balogh.

2.7. Definition. A map f: X = Y is pseudo-open if, for each y € Y, y € Intf(U)
whenever U is an open subset of X containing f~1(y).

2.8. Proposition. [5, Theorem 5.D.2| If f: X — Y is pscudo-open, and X is a Frechet
space, then so'Y is .

2.9. Definition. A map f: X — Y is a s-map if f~1(y) is separable for each y € Y.
2.10. Lemma. [1. Corollary 5.1.26] Every separable paracompact space is a Lindclof

.\'l)(l(‘('.

2.11. Lemma. [1. Corollary 3.1.5] Let U be an open subset of a space X. If a family
{F.}oes of closed subsets of X contains at least one compact set - in particulor. if X is
compact - and if ﬂ F, C U, then there cxists a finite set {s1,...,5n} C S such that

SES
ﬂ Fe. T U,

=l

2.12. Proposition. Let X be a space having a locally countable quasi-k-network. If X
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is w-compact, or X is a locally compact space, then X is a first-countable space. That
means that X is a Frechet space.

Proof. If X is w-compact. then from the proof of (b) = (¢) in Theorem 2.6 it
tollows that X is first-countable.

Assiime now that X is a locally compact space, and x is an arbitrary point in X
Because X has a locally countable quasi-k-network, by Lemma 2.2 every point of X is
a Gs-set. Hence, there exists a sequence of (()mpd(t closed neighbourhoods {V,,} of x

such that V,oq € V, for all n > 1, and {z} = ﬂ V.. Assume that U is an any open
n=1

oC

ncighbourhood of x, i.e tet = ﬂ V,, ¢ U. From Lemma 2.11, it follows that there
ar=]

exists a neighbourhood V., such that V,,, C U. Thus the family {V,} is a countable

neighbourhood base of r, and X is a first-countable space.

2.13. Proposition. [2, Theorem 7.1.(g)] Let X be a Frechet space with a point-countable
J-nctwork, If f: X — Y is a quotient s-map, then Y has a point-countable k-network.

2.14. Theorem. Let f: X —= Y be a pseudo-open s-map. If X is a Frechet space hawving
a locally countable k-network, then so does Y.

Proof. As it is well-known., every Frechet space is a k-space, by Proposition 1.7, and
Corollary 2.4 in order to prove Theorem 2.14, it is sufficient to show that if X is a Frechet
space with a locally countable k-network, f: X — Y a pseudo-open s-map, then Y is a
Frechet space having a star-countable closed k-network.

Tndeed, since X is Frechet, and f is pseudo-open, it follows from Proposition 2.8 that
Y is a Frechet space. Since every locally countable k-network is point-countable, and every
pseudo-open map is quotient, by Proposition 2.13 we get that Y has a point-countable
k-network.

As every Frechet space is a k-space. and X has a locally countable k-network P,
by Lemma 2.4 and Lemma 1.8 X is paracompact. For cach y € Y, since fis a s-map.
fHy) is a separable closed subset of paracompact space X. By Lemma 2.10, it follows
that f~(y) is Lindelof. Put any z € f~Y(y), since P is a locally countable k-network in
X. by Lenuna 2.2 there exists an open Lindelof neighbourhood V; of z such that V. meets
only countable many elements of P. The family {V: 1z € f~Yy)} is an open cover of
f(y). Becanse F=* (c/) is Lindelof, there exists a countable family {V., :n > 1} covering

f~Yy). Denote U = U V. . we have f~ L(y) c U. and by the proof of Lemma 2.2 it
pi=1

follows that the collection @ = {P € P : P C U} is countable, and U = u{P : P e Q}.
For cach P € Q take zp € P. Then the set A = {zp : P € Q} is countable, and
A — U. Denote B = f(A), then B is countable. Because f is continuous it implies that
B = f(U). And since f is a pseudo-open map, we get y € Int f(U). Thus f(U) is a
separable neighbourhood of y.

Hence, Y is a locally separable Frechet space with a point-countable k-network. By
Proposition 1.7 Y is a Frechet space having a star-conntable closed k-network. It follows
from Corolary 2.4 that Y is a Frechet space with a locally countable A-network.
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Since every Frechet space is a k-space, by Corollary 2.4 and Theorem 2.14 we obtain

2.15. Corollary. Let f : X — Y be a pseudo-open s-map. If X is a Frechet space
satisfying the one of the following

a. X has a locally countable quasi-k-network;

b. X has a locally countable k-network;

¢. X has a star-countable closed quasi-k-network;

d. X has a star-countable closed k-network;

e. X has a o-locally finite closed Lindelof quasi-k-network;

f. X has a o-locally finite Lindelof quasi-k-network
then so Y has respectively.

From the latter, Proposition 2.12 and Theorem 2.14, we have

2.16. Corollary. Let X be a space having a locally countable quasi-k-network, f -
X =Y a pscudo-open s-map. Then cach one of the following (a)-(d) unplics that Y has
a locally countable quast-k-network

a. X is an w-compact space;

b. X s a locally compact space;

c. X 1s a first-countable space;

d. X s a Frechet space.
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