ON THE HAHN - DECOMPOSITION AND THE RADON - NIKODYM THEOREM FOR SUBMEASURES IN \mathbb{R}^D

Le Xuan Son, Nguyen Thi Tu Ngoc

Vinh University, Nghe An

Abstract. In this note we characterize the pairs of submeasures in \mathbb{R}^d possessing a certain Hahn - decomposition property and prove the sufficient condition of the Radon - Nikodym Theorem for submeasures in \mathbb{R}^d having the *stable property* (SP).

1. Introduction

As we have seen, the Hahn - decomposition of a signed measure is one of the main tools in the measure theory. In addition, it is a base for proving the Radon - Nikodym Theorem, a fundamental theorem in the measure theory, probability theory and mathematical statistics. The standards of the Hahn - decomposition and the Radon -Nikodym Theorem have been extended by Graf to a new research area, that is capacity[4].

In this note we are going to extend the Hahn - decomposition and the Radon - Nikodym Theorem in measure spaces to one space of submeasures in \mathbb{R}^d which have the stable property. The paper is organized as follows. In section 2 we give the notion of submeasure in \mathbb{R}^d and prove some properties of them. In section 3 we characterize those pairs of submeasures in \mathbb{R}^d which possess a certain Hahn - decomposition property. Section 4 is devoted to the Radon - Nikodym derivaties for submeasures in \mathbb{R}^d which have the stable property.

2. Submeasures in \mathbb{R}^d

We first recall the various notion from [7] which will appear in the paper.

Let $\mathcal{K}(\mathbb{R}^d)$, $\mathcal{F}(\mathbb{R}^d)$, $\mathcal{G}(\mathbb{R}^d)$ and $\mathcal{B}(\mathbb{R}^d)$ denote the families of compact sets, closed sets, open sets and Borel sets in R^d , respectively.

2.1. Definition. A set - function $T : \mathcal{B}(\mathbb{R}^d) \longrightarrow [0; \infty)$ is called a *submeasure* in \mathbb{R}^d if the following conditions hold:

- 1. $T(\emptyset) = 0;$
- 2. $T(A \cup B) \leq T(A) + T(B)$ for any Borel sets A, B ;
- 3. $T(A) = \sup \{ T(K) : K \in \mathcal{K}(\mathbb{R}^d), K \subset A \}$ for any Borel set $A \in \mathcal{B}(\mathbb{R}^d)$;
- 4. $T(K) = \inf \{ T(G) : G \in \mathcal{G}(\mathbb{R}^d), G \supset K \}$ for any compact set $K \in \mathcal{K}(\mathbb{R}^d)$.

From the definition it follows that any submeasure in \mathbb{R}^d is a non - decreasing and finite subadditive set - function on Borel sets of \mathbb{R}^d . Morever, we have

2.2. Proposition. ([7]). Let T be a submeasure in \mathbb{R}^d . If $A \in \mathcal{B}(\mathbb{R}^d)$ with $T(A) = 0$, then

$$
T(B) = T(A \cup B)
$$
 for every $B \in \mathcal{B}(\mathbb{R}^d)$.

Typeset by $A\mathcal{M}S$ -TEX

2.3. Proposition. ([7]). *Any capacity is upper semi* - *continuous on compact sets*, *i.e, if* $K_1 \supset K_2 \supset \cdots \supset K_n \supset \cdots$ is a decreasing sequence of compact sets in \mathbb{R}^d and $\bigcap_{n=1}^{\infty} K_n = K$, then $\lim_{n \to \infty} T(K_n) = T(K)$ for any capacity T.

2.4. Proposition. Any submeasure is lower semi - continuous on open sets, .i.e, if $G_1 \subset G_2 \subset \cdots \subset G_n \subset \cdots$ *is a increasing sequence of open sets in* \mathbb{R}^d *and* $\bigcup_{n=1}^{\infty} G_n = G$, t *hen* $\lim_{n\to\infty} T(G_n) = T(G)$ for any submeasure T.

Proof. For given $\epsilon > 0$, by (3.) in the definition of submeasures, there exists $K \in$ $\mathcal{K}(\mathbb{R}^d)$, $K \subset G$ such that

$$
T(K) > T(G) - \epsilon.
$$

We claim that, there exists $n_0 \in \mathbb{N}$ such that

$$
K \subset G_n \qquad \text{for every} \qquad n \ge n_0.
$$

Indeed, assume, on the contrary, that $K \setminus G_n \neq \emptyset$ for all *n*. Since *K* is a compact set and G_n are open sets, $\{K \setminus G_n\}$ is a decreasing sequence of non - void compact sets. Hence

$$
\bigcap_{n=1}^{\infty} (K \setminus G_n) = K \setminus (\bigcup_{n=1}^{\infty} G_n) = K \setminus G \neq \emptyset
$$

giving a contradition to $K \subset G$. The claim is proved. It follows

$$
T(G_n) \geq T(K) > T(G) - \epsilon, \text{ for every } n \geq n_0.
$$

Therefore

$$
\lim_{n\to\infty}T(G_n)>T(G)-\epsilon.
$$

Since ϵ is arbitrary, then we have

$$
\lim_{n \to \infty} T(G_n) \ge T(G).
$$

Combinating the last inequality with $T(G) \ge \lim_{n \to \infty} T(G_n)$ we get

$$
\lim_{n \to \infty} T(G_n) = T(G).
$$

The proposition is proved.

From Proposition 2.4 we have the following corollary

2.5. Corollary. Any submeasure T in \mathbb{R}^d possesses the countable subadditivity on $\mathcal{G}(\mathbb{R}^d)$ and $\mathcal{K}(\mathbb{R}^d)$.

Proof. Firstly, let $\{G_n\}_{n=1}^{\infty}$ be a sequence of open sets in \mathbb{R}^d and let *T* be a capacity in \mathbb{R}^d . For $n \in \mathbb{N}$, set

$$
B_n = \bigcup_{k=1}^n G_k.
$$

Then ${B_n}_{n=1}^{\infty}$ is a increasing sequence of open sets and $\bigcup_{n=1}^{\infty} B_n = \bigcup_{n=1}^{\infty} G_n$, by Proposition 2.4 we have

$$
T(\bigcup_{n=1}^{\infty} G_n) = T(\bigcup_{n=1}^{\infty} B_n) = \lim_{n \to \infty} T(B_n) = \lim_{n \to \infty} T(\bigcup_{k=1}^{n} G_k)
$$

$$
\leq \lim_{n \to \infty} (\sum_{k=1}^{n} T(G_k)) = \sum_{n=1}^{\infty} T(G_n).
$$

We will show that *T* has σ - subadditive property on $\mathcal{K}(\mathbb{R}^d)$. Let $\{K_n\}_{n=1}^{\infty}$ be a sequence of compact sets in \mathbb{R}^d . Given $\epsilon > 0$, for every n, by (4.) in definition of submeasures, there exists $G_n \in \mathcal{G}(\mathbb{R}^d)$ such that $G_n \supset K_n$ and

$$
T(G_n) < T(K_n) + \frac{\epsilon}{2^n}.
$$

Hence

$$
T(\bigcup_{n=1}^{\infty} K_n) \leq T(\bigcup_{n=1}^{\infty} G_n) \leq \sum_{n=1}^{\infty} T(G_n) < \sum_{n=1}^{\infty} (T(K_n) + \frac{\epsilon}{2^n})
$$
\n
$$
= \sum_{n=1}^{\infty} T(K_n) + \epsilon.
$$

Since ϵ is arbitrary, we get

$$
T(\bigcup_{n=1}^{\infty} K_n) \leqslant \sum_{n=1}^{\infty} T(K_n).
$$

3. The Hahn - decomposition for Submeasures in \mathbb{R}^d

3.1. Definition([4]). Let $S, T : \mathcal{B}(\mathbb{R}^d) \longrightarrow \mathbb{R}^+$ be submeasures in \mathbb{R}^d .

(a) The pair (S, T) is said to possess the *weak decomposition property*(WDP) if, for every $\alpha \in \mathbb{R}^+$, there exists a set $A_{\alpha} \in \mathcal{B}(\mathbb{R}^d)$ such that

$$
\alpha T_{A_{\alpha}} \leqslant S_{A_{\alpha}}
$$
 and $\alpha T_{A_{\alpha}^c} \geq S_{A_{\alpha}^c}$.

.(b) The pair (S, T) is said to possess the *strong decomposition property* (SDP) if, for every $\alpha \in \mathbb{R}^+$, there exists a set $A_{\alpha} \in \mathcal{B}(\mathbb{R}^d)$ such that the following conditions hold:

(i) For $A, B \in \mathcal{B}(\mathbb{R}^d)$; $B \subset A \subset A_\alpha$ implies

$$
\alpha(T(A) - T(B)) \leqslant S(A) - S(B).
$$

(ii) For $A \in \mathcal{B}(\mathbb{R}^d)$; $\alpha(T(A) - T(A \cap A_\alpha)) \geq S(A) - S(A \cap A_\alpha)$.

Observe that (SDP) implies (WDP) and if (S, T) possesses (WDP) then so does (T, S) (see [4]).

3.2. Definition. Let $T : \mathcal{B}(\mathbb{B}^d) \longrightarrow \mathbb{R}^+$ be a submeasure in \mathbb{R}^d . *T* is said to possess *stable property*(SP) if, for any sequense of Borel sets $\{A_n\} \subset \mathcal{B}(\mathbb{R}^d)$ satisfies $T(A_n) = 0$ for every n, then $T(\bigcup_{n=1}^{\infty}) = 0$. By C₀ we denote the family of all submeasures in \mathbb{R}^d which possess SP.

The following result is proved by Graf([4]) for the submeasures with the lower semi - continuous property. Here we will prove for the capacities in \mathbb{R}^d which possess the SP. Note that the lower semi - continuity implies the $\sigma-$ subadditivity which implies the SP.

3.3. Proposition. Assume that $S, T \in \mathcal{C}_0$. Then the following conditions are equivalent:

- *(i) (S,T) has WDP.*
- *(ii)* There exists a Borel measurable function $f : \mathbb{R}^d \longrightarrow [0, +\infty]$ such that

$$
\alpha T_{\{f \ge \alpha\}} \le S_{\{f \ge \alpha\}} \text{ and } \alpha T_{\{f < \alpha\}} \ge S_{\{f < \alpha\}},\tag{1}
$$

for every $\alpha \in \mathbb{R}^+$.

Proof. (ii) \Rightarrow (i). Let f be a Borel measurable function satisfying (1). For each $\alpha \in \mathbb{R}^+$, set

$$
A_{\alpha} = \{ f \geq \alpha \}.
$$

Then we have

 $\alpha T_{A_{\alpha}} \leqslant S_{A_{\alpha}}$ and $\alpha T_{A_{\alpha}} \geq S_{A_{\alpha}}$.

It means that (S, T) has the WDP.

(i) \Rightarrow (ii). For each $\alpha \in \mathbb{R}^+$ let A_α be as in the definition of the WDP. A decreasing family ${B_\alpha : \alpha \in \mathbb{R}^+}$ is defined as follows.

$$
B_0 = \mathbb{R}^d \; ; \; B_\alpha = \cap \{ A_\beta \; ; \; \beta \in \mathbb{Q}(\alpha) \} \text{ for every } \alpha > 0,
$$

where $\mathbb{Q}(\alpha) = [0, \alpha) \cap \mathbb{Q}$ ($\mathbb Q$ denotes the set of all rational numbers). We define a function $f : \mathbb{R}^d \longrightarrow [0; +\infty]$ by Graf's formular :

$$
f(x) = \sup \{ \alpha; \ x \in B_{\alpha} \}.
$$

We will show that

$$
B_{\alpha} = \{ f \ge \alpha \} \quad \text{for every } \alpha \in \mathbb{R}^+.
$$
 (2)

Indeed, $\alpha > 0$ then, by the definition, $x \in B_\alpha$ implies $f(x) \geq \alpha$. Conversely, if $x \in \{f \geq \alpha\}$ then, for every $\beta \in \mathbb{Q}(\alpha)$, there exists $\alpha' \in (\beta, \alpha) \cap \mathbb{Q}$ with $x \in B_{\alpha'}$. Thus we deduce $x \in A_{\beta}$. Since $\beta \in \mathbb{Q}(\alpha)$ is arbitrary we obtain

$$
x \in \bigcap \{A_{\beta}; \beta \in \mathbb{Q}(\alpha)\} = B_{\alpha}.
$$

Since $B_0 = \{f \ge 0\}$ our claim is verified. Because $B_\alpha \in \mathcal{B}(\mathbb{R}^d)$ for every $\alpha \in \mathbb{R}^+$ the function f defined above is also Borel measurable.

Next we will prove that

$$
S(A_{\alpha} \cap A_{\beta}^{c}) = T(A_{\alpha} \cap A_{\beta}^{c}) = 0 \text{ for all } \alpha, \beta \in \mathbb{R}^{+} \text{ with } \beta < \alpha.
$$
 (3)

From the definition of A_{α} and A_{β} we deduce

$$
\alpha T(A_{\alpha} \cap A_{\beta}^{c}) \leqslant S(A_{\alpha} \cap A_{\beta}^{c}) \leqslant \beta T(A_{\alpha} \cap A_{\beta}^{c}).
$$

This inequality implies

$$
T(A_{\alpha} \cap A_{\beta}^{c}) = 0 = S(A_{\alpha} \cap A_{\beta}^{c}).
$$

We claim that

 $\alpha T_{\{f\geq \alpha\}} \leqslant S_{\{f\geq \alpha\}}$ for every $\alpha \in \mathbb{R}^+$. (4)

If $\alpha = 0$ then there is nothing to show. For $\alpha > 0$, let $B \subset \{f \geq \alpha\}$, $B \in \mathcal{B}(\mathbb{R}^d)$. For every $\beta \in \mathbb{Q}(\alpha)$ we have $B \subset A_{\beta}$, therefore $\beta T(B) \leqslant S(B)$. Since $\beta \in \mathbb{Q}(\alpha)$ is arbitrary then

$$
\alpha T(B) \leqslant S(B)
$$

That means that (4) is proved.

To complete the proof of (i) \Rightarrow (ii) we will show that

$$
\alpha T_{B_{\alpha}^c} \ge S_{B_{\alpha}^c} \text{ for every } \alpha \in \mathbb{R}^+.
$$
 (5)

If $\alpha = 0$ this inequality is satisfied by the definition of B_0 . For $\alpha > 0$ let $B \in \mathcal{B}(\mathbb{R}^d)$ with $B \cap B_{\alpha} = \emptyset$ be arbitrary. We have

$$
B = [B \cap (\cup_{\beta \in \mathbb{Q}(\alpha)} A_{\beta}^{c})] \bigcup [B \cap (\cup_{\beta \in \mathbb{Q}(\alpha)} A_{\beta}^{c})^{c}]
$$

=
$$
[\cup_{\beta \in \mathbb{Q}(\alpha)} (B \cap A_{\beta}^{c})] \bigcup [B \cap (\cap_{\beta \in \mathbb{Q}(\alpha)} A_{\beta})] = \bigcup_{\beta \in \mathbb{Q}(\alpha)} (B \cap A_{\beta}^{c}).
$$
 (6)

Because S possesses the SP and by (3) , it follows

$$
S\left(\cup_{\beta \in \mathbb{Q}(\alpha)} (B \cap A_{\alpha} \cap A_{\beta}^c)\right) \leqslant S\left(\cup_{\beta \in \mathbb{Q}(\alpha)} (A_{\alpha} \cap A_{\beta}^c)\right) = 0. \tag{7}
$$

From (6), (7) and $S \in \mathcal{C}_0$ we get

$$
S(B) \leqslant S(B \cap A_{\alpha}) + S(B \cap A_{\alpha}^{c})
$$

=
$$
S\left[\left(\cup_{\beta \in \mathbb{Q}(\alpha)} (B \cap A_{\beta}^{c})\right) \cap A_{\alpha}\right] + S(B \cap A_{\alpha}^{c})
$$

=
$$
S\left(\cup_{\beta \in \mathbb{Q}(\alpha)} (B \cap A_{\alpha} \cap A_{\beta}^{c})\right) + S(B \cap A_{\alpha}^{c})
$$

=
$$
S(B \cap A_{\alpha}^{c}) \leqslant \alpha T(B \cap A_{\alpha}^{c}) \leqslant \alpha T(B).
$$

(5) is proved.

3.4. Definition. Assume that $S, T \in \mathcal{C}_0$.

- (a) If (S, T) has the WDP then every Borel measurable function $f : \mathbb{R}^d \longrightarrow [0, +\infty]$ **such that (1) is satisfied is called a** *decomposion function* **of (5,T).**
- (b) Two Borel measurable functions $f, g : \mathbb{R}^d \longrightarrow [0, +\infty]$ are called $T \text{equivalent if}$ $T({f \neq g}) = 0.$

Then we have

3.5. Proposition. Let $S, T \in \mathcal{C}_0$ and (S, T) has the WDP. Then any two decomposition *functions of* (S, T) are S - and T - *equivalent.*

Proof. Let $f, g : \mathbb{R}^d \longrightarrow [0, +\infty]$ be decomposition functions of (S, T) . For $p, q \in \mathbb{Q}^+$ $\mathbb{Q} \cap \mathbb{R}^+$ with $p < q$ we define

$$
A_{p,q} = \{ f < p \} \cap \{ g \ge q \}.
$$

It is clear that

$$
\{f < g\} = \cup \{A_{p,q} ; p,q \in \mathbb{Q}^+, p < q\}.
$$

By Proposition 3.3 we have

$$
qT(A_{p,q}) \leqslant S(A_{p,q}) \leqslant pT(A_{p,q})
$$
 for $p,q \in \mathbb{Q}^+, p < q$.

It follows that

$$
T(A_{p,q})=0=S(A_{p,q})\text{ for }p,q\in\mathbb{Q}^+,p
$$

Since S, T possess the SP, we get

$$
S({f < g}) = S(\bigcup \{A_{p,q} ; p,q \in \mathbb{Q}^+, p < q\}) = 0,
$$

and

$$
T({f < g}) = T (\bigcup \{A_{p,q} ; p,q \in \mathbb{Q}^+, p < q\}) = 0.
$$

Exchanging the role of f and g leads to

$$
S({g < f}) = T({g < f}) = 0.
$$

Therefore,

$$
S(\{f \neq g\}) \leqslant S(\{f < g\}) + S(\{g < f\}) = 0,
$$

and

$$
T(\{f \neq g\}) \leq T(\{f < g\}) + T(\{g < f\}) = 0.
$$

Hence *f,g* are *S —* and *T —* equivalent.

The following proposition is proved by Graf for the set - functions with the monotone property and the finite subadditive property so it is true for the submeasures in \mathbb{R}^d .

3.6. Proposition. Let $S, T : \mathcal{B}(\mathbb{R}^d) \longrightarrow \mathbb{R}^+$ be submeasures in \mathbb{R}^d . Then (S, T) has the *SDP if only if the following holds :*

- *(i)* (S,T) *has the WDP.*
- *(ii)* For every $\alpha \in \mathbb{R}^+$, for every $A \in \mathcal{B}(\mathbb{R}^d)$ with $\alpha T_A \leqslant S_A$, and for every $B \in \mathcal{B}(\mathbb{R}^d)$ with $B \subset A$ the inequality

$$
\alpha(T(A) - T(B)) \leq S(A) - S(B)
$$

is satisfied.

(iii) For every $\alpha \in \mathbb{R}^+, A \in \mathcal{B}(\mathbb{R}^d)$, and $B \in \mathcal{B}(\mathbb{R}^d)$ with $B \subset A$, $\alpha T_B \leq S_B$, $\alpha T_{A \setminus B} \geq$ $S_{A\setminus B}$ the inequality

$$
\alpha(T(A) - T(B)) \ge S(A) - S(B)
$$

is satisfied.

The following example is a pair of submeasures which possesses the WDP but does not have the SDP.

3.7. Example. Let $S, T : \mathcal{B}(\mathbb{R}) \longrightarrow \mathbb{R}^+$ be set - functions are defined by

$$
S(A) = \begin{cases} 0 & \text{if } A = \emptyset \\ 1 & \text{if } 1 \notin A \neq \emptyset \\ 2 & \text{if } 1 \in A \end{cases}
$$

and

$$
T(A) = \begin{cases} 0 & \text{if } A = \emptyset \\ 2 & \text{if } [0,1] \subseteq A \\ 1 & \text{otherwise.} \end{cases}
$$

Then 5, *T* have the following property:

- (i) $S, T \in \mathcal{C}_0$.
- (ii) T is not lower semi continuous.
- (iii) (S, T) has the WDP, but
- (iv) (S, T) does not have the SDP.

Proof. (i). It is easy to see that *S*, *T* satisfy the conditions (1.) - (4.) in the definition of submeasues and Definition 3.2.

(ii). For each $n \in \mathbb{N}$ we defined

$$
A_n = [0; 1 - \frac{1}{n}] \cup \{1\}.
$$

Then ${A_n}_{n=1}^{\infty}$ is a increasing sequence of Borel sets in *R* and $\cup_{n=1}^{\infty}A_n = [0,1]$. Morever $T(A_n) = 1$ for every *n*. Therefore

$$
T(\bigcup_{n=1}^{\infty} A_n) = 2 > 1 = \lim_{n \to \infty} T(A_n).
$$

Thus *T* is a capacity in R but is not capacity in the sence of Graf.

(iii). Define a Borel measurable function $f: \mathbb{R} \longrightarrow \mathbb{R}^+$ by

$$
f(x) = \begin{cases} 1 & \text{if } x \neq 1 \\ 2 & \text{if } x = 1. \end{cases}
$$

We will show that f satisfies (1). We consider following cases:

Case 1. $\alpha \leq 1$. Note that $T(A) \leq S(A)$ for every $A \in \mathcal{B}(\mathbb{R})$ and $\{f < \alpha\} = \emptyset$, which implies (1) holds.

Case 2 . $1 < \alpha \leq 2$. We have

$$
\{f \geq \alpha\} = \{1\} \; ; \; \{f < \alpha\} = \mathbb{R} \setminus \{1\}.
$$

Hence, (1) is satisfied.

Case 3 . $\alpha > 2$. Note that

$$
\{f \ge \alpha\} = \emptyset \; ; \; \{f < \alpha\} = \mathbb{R}.
$$

Then we have

$$
\alpha T(A) \ge 2.1 \ge S(A) \quad \text{for every} \quad A \in \mathcal{B}(\mathbb{R}), A \neq \emptyset.
$$

Hence. (1) is satisfied in this case.

By Proposition 3.3, (S, T) has the WDP.

(iv). For $\alpha = \frac{1}{2}$, $\alpha T_A \leqslant S_A$ for every $A \in \mathcal{B}(\mathbb{R})$. Let $A = [0,1], B = \{1\}$. Then $S(A) = S(B) = T(A) = 2$, $T(B) = 1$. Hence

$$
\alpha(T(A) - T(B)) = \frac{1}{2}(2 - 1) > 0 = S(A) - S(B).
$$

It means that the condition (ii) in Proposition 3.6 is violated for (S, T) . Therefore, (S, T) does not have the SDP.

3.8. Definition. Let $S, T : \mathcal{B}(\mathbb{R}^d) \longrightarrow \mathbb{R}^+$ be capacities in \mathbb{R}^d . *S* is said to be *absolutely continuous* with respect to *T* and write $S \ll T$ if, for every $A \in \mathcal{B}(\mathbb{R}^d)$, $T(A) = 0$ implies $S(A) = 0.$

3.9. Proposition. Let $S, T \in \mathcal{C}_0$ with (S, T) has WDP. Morever let $f : \mathbb{R}^d \longrightarrow [0, +\infty]$ *be a decomposition function of(S,T). Then the following conditions are equivalent:*

- (i) $S \ll T$.
- *(ii)* $\forall A \in \mathcal{B}(\mathbb{R}^d)$; $S(A) = 0 \Leftrightarrow \int_A f dT = 0$.

Proof. Clearly (ii) implies (i). To prove the converse let $A \in \mathcal{B}(\mathbb{R}^d)$ be arbitrary.

If $S(A) = 0$ then we deduce that, for every $\alpha \in \mathbb{R}^+$,

$$
\alpha T(A \cap \{f \ge \alpha\}) \leqslant S(A \cap \{f \ge \alpha\}) \leqslant S(A) = 0.
$$

This last inequality implies $T(A \cap \{f \ge \alpha\}) = 0$ for all $\alpha \in (0, +\infty)$. This, in turn, leads to

$$
\int_A f dT = \int_0^\infty T(A \cap \{f \ge \alpha\}) d\alpha = 0.
$$

If $\int_A f dT = 0$ then, by the definition of the integral

$$
T(A \cap \{f \ge \alpha\}) = 0
$$

for all $\alpha \in (0, +\infty)$. Since $S \ll T$ this implies

$$
S(A \cap \{f \ge \alpha\}) = 0
$$

for all $\alpha \in (0, +\infty)$, hence, by S has the SP,

$$
S(A \cap \{f > 0\}) = S\big(\cup_{\alpha \in \mathbb{Q}^+} (A \cap \{f \ge \alpha\})\big) = 0,
$$

where $\mathbb{Q}^+_* = \mathbb{Q} \cap (0, +\infty)$.

For all
$$
\alpha \in (0, +\infty)
$$
, since $A \cap \{f = 0\} \subset \{f < \alpha\}$ for all $\alpha > 0$ we have

 $\alpha T(A \cap \{f = 0\}) \geq S(A \cap \{f = 0\}).$

This implies

$$
S(A \cap \{f=0\}).
$$

Hence we obtain

$$
S(A) \leqslant S(A \cap \{f = 0\}) + S(A \cap \{f > 0\}) = 0.
$$

4. The Radon - Nikodym derivatives for Submeasures in \mathbb{R}^d

4.1. Definition ([6]). Let *S*, *T* be monotone set functions on \mathbb{R}^d . We say that (S, T) has *Radon - Nikodym property*(RNP) if there exists a Borel measurable function $f : \mathbb{R}^d \longrightarrow \mathbb{R}^+$ such that

$$
S(A) = \int_A f dT \quad \text{for every} \ \ A \in \mathcal{B}(\mathbb{R}^d).
$$

Then the function f is called the Radon - Nikodym derivative of *S* with respect to *T* and written as $f = dS/dT$.

As in the case of measures, we see that if $T(A) = 0$, then $S(A) = 0$. However, unlike the situation for measures, this condition of $S \ll T$ is only a *necessary condition* for *S* to admite a Radon - Nikodyrn derivative with respect to *T.* Depending upon additional properties of *S* and *T*, sufficient conditions can be found. For example, suppose that *S* and *T* both belong to the class of capacities μ of the following type (Graf, [4]):

- (a) $\mu(\emptyset) = 0;$
- (b) $\mu(A) \leq \mu(B)$ for any $A, B \in \mathcal{B}(\mathbb{R}^d)$ with $A \subset B$;
- (c) $\mu(A \cup B) \leq \mu(A) + \mu(B)$ for any $A, B \in \mathcal{B}(\mathbb{R}^d)$; and
- (d) $\mu(\bigcup_{n=1}^{\infty} A_n) = \lim_{n \to \infty} \mu(A_n)$ for any increasing sequence $\{A_n\} \subset \mathcal{B}(\mathbb{R}^d)$.

Then as shown by Graf (1980), a necessary and sufficient condition for *s* to admit a Radon - Nikodym derivative with respect to *T* is (S, T) has the SDP and $S \ll T$.

Let $\{A_t : t \in \mathbb{R}^+\}$ be a family of Borel sets in \mathbb{R}^d . A decreasing family $\{B_t : t \in$ \mathbb{R}^d $\subset \mathcal{B}(\mathbb{R}^d)$ is defined as follows :

$$
B_0 = \mathbb{R}^d \; ; \; B_t = \cap_{q \in \mathbb{Q}(t)} A_q \quad \text{for each } t > 0,
$$

where $\mathbb{Q}(t) = [0, t) \cap \mathbb{Q}$. Since $\mathbb{Q}(t)$ is countable, it follows that B_t is a Borel set for every $t \in \mathbb{R}^+$. We define a function $f : \mathbb{R}^d \longrightarrow \mathbb{R}^+$ by the following formula:

$$
f(x) = \begin{cases} 0 & \text{if } x \in \bigcap_{t \in \mathbb{Q}^+} B_t \\ \sup\{t; x \in B_t\}, & \text{otherwise.} \end{cases}
$$
 (8)

It is easy to see that

$$
B_t = \{ f \ge t \} \cup B_{\infty} \text{ and } \{ f < t \} = B_t^c \cup B_{\infty}, \text{ for every } t \in (0, +\infty), \tag{9}
$$

where $B_{\infty} = \bigcap_{t \in \mathbb{Q}^+} B_t$. Consequently, f is a Borel measurable function.

Now we prove the sufficient condition of the Radon - Nikodym Theorem for submeasures possessing SP in \mathbb{R}^d .

4.2. Theorem. Assumse that $S, T \in C_0$. Then (S, T) has the RNP if there exists a *family* $\{A_t; t \in \mathbb{R}^+\}\subset \mathcal{B}(\mathbb{R}^d)$ *satisfying following conditions:*

- (i) $\lim_{n \to \infty} S(B_n) = \lim_{n \to \infty} T(B_n) = 0;$
- (*ii*) $S(\widetilde{B_t} \setminus A_t) = T(\widetilde{B_t} \setminus A_t) = 0$ for every $t \in \mathbb{R}^+$;
- *(iii)* For any $s, t \in \mathbb{R}^+$ with $s < t$ and $A \in \mathcal{B}(\mathbb{R}^d)$,

$$
s[T(A \cap A_s) - T(A \cap A_t)] \leqslant S(A \cap A_s) - S(A \cap A_t)
$$

$$
\leqslant t[T(A \cap A_s) - T(A \cap A_t)].
$$

Proof. The first we establish some relations between families $\{A_t\}, \{B_t\}$ and $\{f \geq t\}$. **Claim 1.** For every $A \in \mathcal{B}(\mathbb{R}^d)$ we have

$$
S(A) = \lim_{n \to \infty} S(A \cap B_n^c) = \lim_{n \to \infty} S(A \cap \{f < n\})
$$

and

$$
T(A) = \lim_{n \to \infty} T(A \cap B_n^c) = \lim_{n \to \infty} T(A \cap \{f < n\}).
$$

Proof. For any $n \in \mathbb{N}$, we get

$$
S(A \cap B_n^c) \leqslant S(A) \leqslant S(A \cap B_n) + S(A \cap B_n^c)
$$

$$
\leqslant S(B_n) + S(A \cap B_n^c),
$$

hence by (i) we have

$$
S(A) = \lim_{n \to \infty} S(A \cap B_n^c).
$$

From (9) and $S(B_{\infty}) \leq \lim_{n \to \infty} S(B_n) = 0$ we deduce

$$
S(A \cap \{f < n\}) = S[A \cap (B_n^c \cup B_\infty)] = S(A \cap B_n^c),
$$

and the result follows. Similarly,

$$
T(A) = \lim_{n \to \infty} T(A \cap B_n^c) = \lim_{n \to \infty} T(A \cap \{f < n\}).
$$

Claim 2. $S(A_t \setminus B_t) = T(A_t \setminus B_t) = 0$ for every $t \in \mathbb{R}^+$. *Proof.* Let $A = A_t \setminus A_s$ in (iii), then we obtain

$$
-sT(A_t \setminus A_s) \leqslant -S(A_t \setminus A_s) \leqslant -tT(A_t \setminus A_s)
$$

for any $s, t \in \mathbb{R}^+$ with $s < t$. It brings about

$$
T(A_t \setminus A_s) = S(A_t \setminus A_s) = 0. \tag{10}
$$

for any $s, t \in \mathbb{R}^+$ with $s < t$. Observe that

$$
A_t \setminus B_t = A_t \setminus (\cap_{q \in \mathbb{Q}(t)} A_q) = \cup_{q \in \mathbb{Q}(t)} (A_t \setminus A_q).
$$

Since $q < t$, we obtain from (10) and $S, T \in \mathcal{C}_0$,

$$
S(A_t \setminus B_t) = T(A_t \setminus B_t) = 0 \text{ for every } t \in \mathbb{R}^+.
$$

Claim 3. For any $t \in \mathbb{R}^+$ and $A \in \mathcal{B}(\mathbb{R}^d)$,

$$
S(A \cap A_t) = S(A \cap \{f \ge t\}) \quad \text{and} \quad T(A \cap A_t) = T(A \cap \{f \ge t\}).
$$

Proof. Note that

$$
A \cap A_t = [A \cap (A_t \setminus B_t)] \cup (A \cap A_t \cap B_t).
$$

By Claim 2, we obtain $S(A \cap A_t) = S(A \cap A_t \cap B_t)$. Similarly we can obtain $S(A \cap B_t) =$ $S(A \cap A_t \cap B_t)$. Thus, with (9) and $S(B_{\infty}) = 0$ we get

$$
S(A \cap A_t) = S(A \cap B_t) = S[A \cap (\{f \ge t\} \cup B_{\infty})]
$$

=
$$
S[(A \cap \{f \ge t\}) \cup (A \cap B_{\infty})] = S(A \cap \{f \ge t\}).
$$

A similar reasoning is applied to *T.*

Claim 4. For any $s, t \in \mathbb{R}^+$ with $s < t$ and $A \in \mathcal{B}(\mathbb{R}^d)$,

$$
s[T(A \cap \{f \ge s\}) - T(A \cap \{f \ge t\})] \le S(A \cap \{f \ge s\}) - S(A \cap \{f \ge t\})
$$

$$
\le t[T(A \cap \{f \ge s\}) - T(A \cap \{f \ge t\})].
$$

Proof. By (iii) and Claim 3,

$$
s[T(A \cap \{f \ge s\}) - T(A \cap \{f \ge t\})] = s[T(A \cap A_s) - T(A \cap A_t)]
$$

\n
$$
\le S(A \cap A_s) - S(A \cap A_t)
$$

\n
$$
= S(A \cap \{f \ge s\}) - S(A \cap \{f \ge t\}).
$$

Similarly we can obtain

$$
S(A \cap \{f \ge s\}) - S(A \cap \{f \ge t\}) \le t[T(A \cap \{f \ge s\}) - T(A \cap \{f \ge t\})].
$$

Now we are able to complete the proof of our main result.

Claim 5. For $f : \mathbb{R}^d \longrightarrow \mathbb{R}^+$ be given in (8) we have

$$
S(A) = \int_A f dT \quad \text{for every} \ \ A \in \mathcal{B}(\mathbb{R}^d).
$$

Proof. Let $A(n): = A \cap \{f \leq n\}$ for every $A \in \mathcal{B}(\mathbb{R}^d), n \in \mathbb{N}$. Then as $A(n) \subset \{f \leq n\},$

$$
\int_0^n T(A(n) \cap \{f \ge t\})dt = \int_0^\infty T(A(n) \cap \{f \ge t\})dt. \tag{11}
$$

We first prove that

$$
S(A(n)) = \int_0^\infty T(A(n) \cap \{f \ge t\}) dt \text{ for every } n \in \mathbb{N}.
$$

Let $0 = t_0 < t_1 < \cdots < t_k = n$,

$$
s_k = \sum_{i=1}^k (t_i - t_{i-1}) T(A(n) \cap \{f \ge t_i\}),
$$

and
\n
$$
S_k = \sum_{i=1}^k (t_i - t_{i-1}) T(A(n) \cap \{f \ge t_{i-1}\}).
$$

Then we have

$$
s_k \leqslant \int_0^n T(A(n) \cap \{f \geq t\}) dt \leqslant S_k.
$$

Note that as $\max\{t_i - t_{i-1}; i = 1, \cdots k\} \to 0$,

$$
s_k \to \int_0^n T(A(n) \cap \{f \ge t\})dt, \quad S_k \to \int_0^n T(A(n) \cap \{f \ge t\})dt. \tag{12}
$$

Using the first inquality in Claim 4 and the fact that $S(A(n) \cap \{f \ge t_k\}) = T(A(n) \cap \{f \ge t_k\})$ $t_{k}\}) = 0$, we obtain

$$
s_k = \sum_{i=1}^k (t_i - t_{i-1})T(A(n) \cap \{f \ge t_i\})
$$

=
$$
\sum_{i=1}^k t_i T(A(n) \cap \{f \ge t_i\}) - \sum_{i=1}^k t_{i-1} T(A(n) \cap \{f \ge t_i\})
$$

=
$$
\sum_{i=1}^{k-1} t_i [T(A(n) \cap \{f \ge t_i\}) - T(A(n) \cap \{f \ge t_{i+1}\})]
$$

$$
\le \sum_{i=1}^{k-1} [S(A(n) \cap \{f \ge t_i\}) - S(A(n) \cap \{f \ge t_{i+1}\})]
$$

=
$$
S(A(n) \cap \{f \ge t_1\}) \le S(A(n)).
$$

Similarly, using the second inequality in Claim 4, $S_k \geq S(A(n))$. Therefore

۰

$$
s_k \leqslant S(A(n)) \leqslant S_k.
$$

Combining (11) and (12), we obtain

$$
S(A(n)) = \int_0^n T(A(n) \cap \{f \ge t\})dt = \int_{A(n)} f dT.
$$

By Claim 1 we have

$$
S(A) = \lim_{n \to \infty} S(A(n)) = \int_0^\infty T(A \cap \{f \ge t\}) dt = \int_A f dT.
$$

Consequently, we reach the conclution of the Theorem 4.2.

Remark. 1. Observe that conditions (i) - (iii) imply $S \ll T$. In fact, assumse that $T(A) = 0$. Then from Claim 4,

$$
S(A \cap \{f \ge s\}) - S(A \cap \{f \ge t\}) = 0 \text{ for every } s, t \in \mathbb{R}^+ \text{ with } s < t.
$$

Let $t = n \rightarrow \infty$, we obtain from (i),

$$
S(A \cap \{f \ge s\} = \lim_{n \to \infty} S(A \cap \{f \ge n\}) \le \lim_{n \to \infty} S(A \cap B_n) = 0,
$$

for every $s \in \mathbb{R}^+$.

It follows that $S(A \cap \{f \ge 0\}) = S(A) = 0$.

2. (S, T) has the RNP implies (ii) and (iii) (see, [6]).

The following example is a pair (S, T) of submeasures in \mathbb{R}^d which satisfies the conditions of Theorem 4.2, and hence (S, T) has the RNP.

4.3. Example. Let *T* be defined as in the Example 3.7. Define $S : \mathcal{B}(\mathbb{R}^d) \longrightarrow \mathbb{R}^+$ by

$$
S(A) = \begin{cases} 0 & \text{if } A \cap [0,1] = \emptyset \\ 1 - \inf\{x : x \in A \cap [0,1]\} & \text{if } A \cap [0,1] \neq \emptyset. \end{cases}
$$

Then $S, T \in \mathcal{C}_0$ (T is not capacity in the sence of Graf) and (S, T) has the RNP.

Proof. It is easy to see that $S, T \in \mathcal{C}_l$. Define a family $\{A_t; t \in \mathbb{R}^+$ by

$$
A_t = \begin{cases} [0, 1-t] & \text{if } t \leq 1\\ \emptyset & \text{if } t > 1. \end{cases}
$$

Then the family $\{A_t; t \in \mathbb{R}^+\}$ satisfies conditions (i) - (iii) of Theorem 4.2.

References

- 1. P. Billingsley, *Convergence of Probability Measures,* John Wiley *k* Sons, New York. Chichester, Brisbane, Toronto, 1968.
- 2. G. Choquet, Theory of Capacities, *Ann. Inst. Fourier* 5(1953 1954), 131 295.
- 3. R, M. Dudley, *Real Analysis And Probability,* Cambridge university Press, 2002.
- 4. S. Graf, A Radon Nikodym Theorem for Capacitis, *J. Reine und Angewandte Mathematik,* 320(1980) 192 - 214.
- 5. P. R. Halmos, *Measure Theory,* Springer Verlag New York Inc, 1974.
- 6. Hung T. Nguyen, Nhu T. Nguyen and Tonghui Wang, On Capacity Functionals in Interval Probabilities, *International Journal of Uncertainly,* Fuzziness and Knowlege - Based Systems. Vol. 5, N_o. 3(1997) 359 - 377.
- 7. Nguyen Nhuy and Le Xuan Son, probability Capacities in \mathbb{R}^d and Choquet Integral for Capacities, *Acta Math. Viet.* Vol 29, *No* 1(2004), 41 - 56.
- 8. Nguyen Nhuy and Le Xuan Son, The Weak Convergence in the Space of Probability Capacities in \mathbb{R}^d , To appear *in Viet. J. Math* (2003).
- 9. K. R. Parthasarathy, *Probability Measure on Metric Spaces*, Academic Press New York and London(1967).