
V N U . J O U R N A L  O F SCIENCE, M a th e m a t ics  - Physics. T.xx, Nq3 - 2004

ON T H E  H A H N  - D E C O M P O S I T I O N  A N D  T H E  R A D O N
- N I K O D Y M  T H E O R E M  F O R  S U B M E A S U R E S  I N  R D

Le X u a n  S o n ,  N g u y e n  T h i  T u  N g o c

Vinh University, Nghe An

A b s t r a c t .  In this note we characterize the pairs of submeasures in R d possessing a 
certain Hahn - decomposition property and prove the sufficient condition of the Radon - 
Nikodyrn Theorem for submcasures in 1R̂  having the stable propcĩty (SP).

1. I n t r o d u c t i o n

As we have seen, the Hahn - decomposition of a signed measure is one of the 
main tools in the measure theory. In addition, it is a base for proving the Radon - 
Nikodym Theorem, a fundam ental theorem in the measure theory, probability theory and 
mathematical statistics. T he  s tandards  of the Hahn - decomposition and the Radon - 
Nikodym Theorem have been extended by Graf to a new research area, th a t  is capacity[4], 

In this note we are going to extend the Hahn - decomposition and the Radon
- Nikodym Theorem  in measure spaces to one space of submeasures in R d which have 
the stable property. T he paper is organized as follows. In section 2 we give the notion 
of submeasure in w l and prove some properties of them. In section 3 we characterize 
those pairs of submeasures in R d which possess a certain Hahn - decomposition property. 
Section 4 is devoted to  the Radon - Nikodym derivaties for submeasures in R which have 

the stable property.

2. S u b m e a s u r e s  in  R d

We first recall the various notion from [7] which will appear in the paper.
Let JC(Rd) Ợ(Ká) and B{Kd) denote the families of compact sets, closed

sets, open sets and Borel sets in R d, respectively.

2.1. D e f in i t io n .  A set - function T  : ổ ( E d) — * [0;oo) is called a submeasure in if 
the following conditions hold:

1 T(0) =  0;
2. T ( A  U 5 K  T (A ) +  T ( B ) for any Borel sets A ’ B]
3. T ( A)  =  su p {t \ k ) : K  € IC{Rd) , K  c  A}  for any Borel set A  e  B{Rd)]
4. T { K )  =  in f{T{G)  : G  €  G{Rd), G D K }  for any compact set K  € £ ( R d).

From the definition it follows th a t  any submeasure in R d is a non - decreasing and 
finite subadditive set - function on Borel sets of R d. Morever, we have

2.2. P r o p o s i t i o n .  ([7]). Let T  be a submeasure in R d. I f  A  e  B{ Rd) with T ( A ) =  0,

T ( B )  = T ( A u B )  for every B  € B(R d).
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2.3. P ro p o s i t io n .  ([7]). A n y  capacity is upper semi - continuous on compact sets, 
j.e, i f  K ị  D K 2 D - D K n D • - • is a decreasing sequence o f compact sets in R d and 
fìn=i Kn = K ,  then lim T ( K n ) = T ( K )  for any capacity T .

2.4. P ro p o s i t io n .  A n y  submeasure is lower semi - continuous on open sets, j .e , i f  
G\ c  Ơ 2 c  • • • c  Gn c  • • • is a increasing sequence o f open sets in R d and  U^Li G n =  Ơ, 
then lim T ( G n) — T ( G ) for any submeasure T .

n —>oo

Proof. For given € >  0, by (3.) in the definition of submeasures, there exists i f  e  
/C(Rd) , / i  c  G such that

T(K)  > T(G)  -  6 .

We claim that, there exists no e  N such th a t

K  c  G n for every n > ĨÌQ.

Indeed, assume, on the contrary, tha t K  \  Gn  7̂  0 for all n.  Since K  is a compact set and 
Gn are open sets, { K  \  Gn } is a decreasing sequence of non - void compact sets. Hence

f | ( A : \ G n) =  A ' \ ( 0  G n ) = K \ G ạ ự )
1 = 1  n = ln = 1

giving a contradition to K  c  G.  The claim is proved. It follows

T(Gn) > T ( K ) >  T(G) — 6, for every n > no

Therefore

n —>oo
lim r(G„) >  T( G)  -  €.

Since e is arbitrary, then we have

lim T { G n ) > T ( G ) .
n —>oo

Combinating the last inequality with T( G)  > lim T ( G n ) we get
Tl—>00

lim T ( G n ) = T ( G ) .
71—>00

The proposition is proved.

From Proposition 2.4 we have the following corollary



2.5. C o ro l la ry .  A n y  submeasure T  in R d possesses the countable subadditivity on 

ỡ ( R d) and K ( R d).

Proof. Firstly, let {Gn }̂ °=1 be a  sequence of open sets in R d and let T  be a capacity in 
W L. For 77, G N, set

Bn = [ j G k.
k= 1

Then { 5 n }J°_i is a increasing sequence of open sets and U^Li Bn — UÍT=1 by Propo
sition 2.4 we have

T(U~=1Gn) =  r ( u ~ =1£ n) =  l i m T ( B n) =  lim r ( U Ĩ =1Gfc)71—»00 71—>00
n  oo

< lim ( £ r ( G * ) ) = £ r ( G „ ) .
71 k = 1 n = l

We will show th a t  T  has Ơ - subadditive property  on /C(Rd). Let { K n } ^ =1 be a sequence 
of compact sets in R d. Given € >  0, for every n, by (4.) in definition of submeasures, there 
exists Gn €  Ợ(Kd) such th a t  Gn D K n  and

T ( G n) < T ( K n) +  Ặ .

Hence

oo oo oo oo ^
T( u  K n ) ^ T ( \ j G n ) < Y ^  T ( G n ) < Y ^ ( T ( K n ) + ỳ )

n = l  71=1 71= 1 71 =  1

=  f ] T ( K n ) + e.
n=1

Since e is arbitrary, we get

T { \ j K n) ^ f ^ T ( K n).
n = l  n = l

3. T h e  H a h n  - d e c o m p o s i t i o n  for S u b m e a s u r e s  in  R d

3.1. D e f i n i t i o n a l ) .  Let S , T  : B ( R d) — -> R + be submeasures in R d .
(a) T he pair (S ,T )  is said to possess the weak decomposition property^W DP) if, for 

every a  e  K+ , there exists a set A a e  B ( R d) such tha t

a T Aa <  S Aa and a T A% > S Aị  ■

.(b) T he pair (S ,T )  is said to possess the strong decomposition property^SDP) if, for 
every a  € R + , there exists a set A a 6 5 ( R d) such th a t  the following conditions 

hold:
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(i) For A, B e  B( Rd); D c  A c  Aa implies

a ( T ( A ) - T ( B ) ) ^ S ( A ) - S ( B ) .

(ii) For A e  ổ(Rd); a( T( A)  -  T ( A  n Aa )) > S ( A ) -  S ( A  n Ả Q).
Observe th a t  (SDP) implies (W DP) and if ( S , T )  possesses (W D P) then so does 

(T, S)  (see [4]).

3.2. D efin itio n . Let T  : B(Md) — > R+ be a submeasure in R d. T  is said to possess 
stable property{SP) if, for any sequense of Borel sets { A n } c  B ( R d) satisfies T ( A n ) = 0 for 
every n, then T ( ( J ^ =1) =  0. By Co we denote the family of all submeasures in R d which
possess SP.

The following result is proved by Graf([4]) for the submeasures with the lower semi
- continuous property. Here we will prove for the capacities in which possess the SP. 
Note that the lower semi - continuity implies the Ơ— subadditivity  which implies the SP.

3.3. P ro p o s i t io n .  Assume that S , T  E Co. Then the following conditions are equivalent:
(i) (S,T) has WDP.

(ii) There exists a Dorel measurable function f  : R d — > [0; -f-oo] such that

a T {f><*} <  s u ><*} and a T { /< a }  >  (1)

for every a  e  R + .

Proof, (ii) => (i). Let /  be a Borel measurable function satisfying (1). For each a  e  R+, 
set

A  a  =  { f  >  a } .

Then we have
a T Aa ^  S a q and a T Ac > S ac .

It means that (5, T)  has the WDP.
(i) =» (ii). For each a  6  1R+ let A a be as in the definition of the W DP. A decreasing 

family {B a : a  £ R + } is defined as follows.

Bo = R d ; Bot =  r){A(3 ; /3 6  Q (a )}  for every a  >  0,

where Q (a) =  [0; a)  n Q  (Q denotes the set of all rational numbers). We define a function 
/  : R d — » [0; 4-oo] by G raf’s formular :

f ( x )  = sup{a; X e  B a }.

We will show that
Bet — { /  > ol] for every a  E . (2)

Indeed, a  > 0 then, by the definition, X G B a implies f ( x )  > a.  Conversely, if X 6 { /  >  a}  
then, for every p  e  Q (q), there exists a '  G (/?, a ) n Q  with X G B a'. Thus we deduce X G Ap. 
Since /3 E Q (a) is arbitrary we obtain

x e n { A (3]p e Q { a ) }  = B a .
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Since Bo — { /  >  0} our claim is verified. Because B a £ B ( Rd) for every a  E the
function /  defined above is also Borel measurable.

Next we will prove th a t

S ( A a n  A%) =  T (A a n ^ ) - 0  for all ử , / 3 g R + with p  < a.  (3)

From the definition of A a and Ap  we deduce

a T ( A a n  i4^) <  S ( A a n  Ap)  <  (3T(Aa n  A£).

This inequality implies
T ( A a n A ^ )  =  o =  S ( Aa n A^ ) .

We claim tha t

a T { f ><*}  ^  5 { / > a }  f o r  e v e r y  a  6  K + -

If a  = 0 then there is nothing to show. For a  >  0, let B  c  { /  >  a} , B  € B{Rd). For every 
f3 e  Q (a)  we have D c  Ap,  therefore 0 T ( B )  <  5 (B ).  Since /3 e  Q (a )  is arbitrary then

q T (B )  <  5 ( 5 ) .

T h a t means th a t  (4) is proved.
To complete the proof of (i) =»(ii) we will show tha t

cíT ịịc >  S b ° f o r  e v e r y  a  e  R + . ( 5 )

If a  =  0 this inequality is satisfied by the definition of Do. For a  > 0 let B  € B (R d) with 
D n  B a = 0 be arbitrary. We have

D = [D n  (u /3ểq(q) ^ ) ]  Ị J  [b  n  (U/jgQ,(a)Ap) ]

=  [u /JGQ(a) { B  n  A %) ]  u  [ B  n  ( n 0 e Q ( « ) 4 f O ]  =  u  ( B n A P ) •  ( 6 )
PeQ(a)

Because 5  possesses the SP and by (3), it follows

s  (uiaeQ(Q)(B n Aa n Ap)) ^  s  (U/3gQ(Q)(Aa n Ap)) = 0. (7)

From (6), (7) and s  e  Co we get

S{B) ^ S { B n A a) + S ( B n A ca)
= 5 [(u0€Q(a){B n Ap)) n Aa] + S(D n Aca)
= s  (up£Q(a){B n  Aa n Ap)) + S(B n Aca)
= S (D  n  A ca ) ^  a T ( B  n  A ị )  ^  aT ( B) .

(5) is proved.

3.4. D e f in i t io n .  Assume th a t  5 , T  G Co-
(a) If (5, T)  has the  W D P  then  every Borel measurable function /  : R d — » [0 ,+ 00] 

such that (1) is satisfied is called a decom posion function  of  ( 5 ,T ) .
(b) Two Borel measurable functions / ,  g : R d — * [0,-foo] are called T  — equivalent if

T ( { f / g } )  =  0.
Then we have
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3.5. P ro p o s i t io n .  Let 5, T  E Co and (5, T) has the W D P . Then any two decomposition 
functions o f  (5, T) are S '-  and T -  equivalent.

Proof. Let / , g : — » [0,+oo] be decomposition functions of ( 5 ,T). For p ,q  E Q + =
Q n  R + with p < q we define

= {/ <p}n{5  > (?}.

It is clear that
{ / <<?}  =  U{ẨPi9 ; p , q e Q +, p <  q}.

By Proposition 3.3 we have

q T ( Ap<g) ^  S ( A Piq) ^  p T ( A Ptq) for p,q e  Q  +, p <  q.

It follows that
T ( A P,q) = 0 =  S ( A PiQ) for p, q € Q + ,p <  <?.

Since 5, T  possess the SP, we get

S { { f  <  g})  =  s  (u{Ẩp,q ; p, q e  Q + ,p <  q})  =  0,

T ( { f  < g})  =  T  (u{Ap,9 ; p,q e  Q + , p < q})  =  0.

Exchanging the role of /  and g leads to

S( {g  < / } )  =  T({g < /} )  =  0.

Therefore,
S ( { f  + g})  <  S ( { f  < g}) + S({g  <  /} )  =  0,

T ( U  ±  5 »  <  T ( { f  <  5»  +  T({g <  / } )  =  0.

Hence f , g  are S — and T — equivalent.
The following proposition is proved by Graf for the set - functions with the monotone 

property and the finite subadditive property so it is true for the submeasures in R d .

3.6. P ro p o s i t io n .  Let  5, T  : B ( Rd) — » be submeasures in R d. Then  (5, T) has the 
SDP i f  only i f  the following holds :

(i) (S ,T ) has the WDP.
(ii) For every a  G for every A  6 B ( Rd) with clT a ^  S a , and for every B  G B( Rd) 

with B  c  A the inequality

a(T(A) -  T{B))  ^  S(A)  -  S(B)

is satisfied.



(Hi) For every a  E 6 B (R d), and B  6 B( Rd) with D c  A , 0ÍTb ^  5 b , olT^\b  >
S a \b  the inequality

a(T(A) — T(B)) > S(A) — S(B)

is satisfied.

The following example is a pair of submeasures which possesses the W DP but does 
not have the SDP.

3.7. E x a m p le .  Let S , T  : B{R) — > R + be set - functions are defined by

f 0 if A  = 0

S(A) = < 1 if i ị  A^ự)
( 2  if 1 e A

and
( 0 if -A — 0

T{A) = < 2 if [0,1] c  i4
[  1 otherwise.

Then 5, T  have the following property:
(i) S ,T e C 0.

(ii) T  is not lower semi - continuous.
(iii) (S, T) has the WDP, but
(iv) (5, T) does not have the SDP.

Proof, (i). It is easy to see tha t S , T  satisfy the conditions (1.) - (4.) in the definition of 
submeasues and Definition 3.2.

(ii). For each n E N we defined

An = [0; 1 — —] u {1}.
n

Then {Ẩn }^L1 is a increasing sequence of Borel sets in R  and U^Lx-An =  [0,1]. Morever 
T( An)  = 1 for every n.  Therefore

T(U~=1An ) =  2 >  1 =  lim T ( A n ).
n —>00

Thus T  is a capacity in R but is not capacity in the sence of Graf.
(iii). Define a Borel measurable function /  : R  — > K+ by

f 1 if X Ỷ  1
/ ( * )  =  -[ 2  if X =  1.

We will show tha t /  satisfies (1). We consider following cases:

C a se  1. Q ^  1. Note th a t  T( A)  <  S{A)  for every A  € B(R)  and { /  <  a}  = 0, 
which implies (1) holds.

C a se  2 . 1 <  a  ^  2. We have

{ / > « }  =  { 1} ; { /  <  a} =  R \  {1}.

Hence, (1) is satisfied.
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C a se  3 . a  >  2. Note tha t

{/ >  a} =  0 ; {/ <  a} =  R.

Then we have
a T ( A )  > 2.1 > S(A)  for every A  6 Ổ(R), A Ự).

Hence. (1) is satisfied in this case.
By Proposition 3.3, (5, T) has the WDP.
(iv). For a  =  5 , olTa ^  5.4 for every A  G Ổ(R). Let A =  [0,1], D = {1}. Then 

S{A)  = S ( B)  =  r(A) =  2, T (B ) =  1. Hence

It means that the condition (ii) in Proposition 3.6 is violated for (5, T). Therefore, (5, T) 
does not have the SDP.

3.8. D e f in itio n .  Let s, T  : ổ (R đ) — » R + be capacities in R d. s is said to be absolutely 
continuous with respect to T  and write S « T  if, for every A  € ổ ( R ci) ,T (A ) =  0 implies 
S{A)  = 0.

3.9. P r o p o s i t io n .  Let S , T  € Co with (S, T )  has WDP. Morever let f  : R d — > [0, + 00] 
be a decomposition function o f ( S , T ) .  Then the following conditions are equivalent:

(i) 5  <  T
(ii) W1 e B{Rrf); 5(A) = 0  & f A fdT = 0 .

Proof. Clearly (ii) implies (i). To prove the converse let A  G Z3(M ) be arbitrary.
If S(i4) =  0 then we deduce that, for every a  € M-1",

This last inequality implies T (A  n {/ > a}) = 0 for all a  €  (0, -foe). This, in turn, leads

Q(T(A)  -  T { D )) =  1(2  -  1) >  0 =  S( A)  -  S{B) .

a T ( A  n {/ > a}) ^  S ( A  n {/ > a}) ^  S ( A )  = 0.

to

f d T =  T ( A  n {/ > a ] ) d a  =  0. 
7 a  ./0

If f A f d T  =  0 then, by the definition of the integral

T ( A  n  { /  >  a} )  =  0

for all a  € (0, +oo). Since 5  this implies

5(^4 n { /  >  a})  =  0 

for all a  E (0, +oo), hence, by 5  has the SP,

S( A  n {/ > 0}) = s ( u aeQ+ (A n { /  >  a } ) )  =  0,
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where =  Q n  ( 0 , + 0 0 ).
For all a  €  (0, + 0 0 ), since A  n  { /  =  0} c  { /  <  a} for all a  >  0 we have

a T ( A  n  { /  =  0}) >  S ( A  n  { /  =  0}).

This implies
S (A n { /  = 0}).

Hence we obtain
5(A) < S(A n {/ = 0»  + 5(A n {/ > 0}) = 0.

4. T h e  R a d o n  - N i k o d y m  d e r iv a t iv e s  fo r  S u b m e a s u r e s  in  R d

4.1. D e f in i t io n  ([6]). Let S , T  be monotone set functions on R d. We say tha t ( S , T)  has 
Radon - Nikodym property{R N P) if there exists a Borel measurable function f  : R d — > R +
such that

S ( A )  =  I  f d T  for every A  €  B( Rd).
J A

Then the function /  is called the  R adon - Nikodym derivative of s  with respect to T  and
written as /  =  dS / dT .

As in the case of measures, we see th a t  if T { A ) =  0, then S ( A ) =  0. However, unlike 
the situation for measures, this condition of s  <ắí T  is only a necessai'y condition for s  
to admite a Radon - Nikodyrn derivative with respect to T .  Depending upon additional 
properties of s  and r ,  sufficient conditions can be found. For example, suppose tha t s  
and T  both belong to the  class of capacities ụ  of the following type (Graf, [4]):

(a) £i(0) =  0;
(b) fi{A) ^  for any A, B  E J3(Rd) with A  c  B ;
(c) f i (A u  B)  ^  f i{A)  +  /i(B ) for any A, B  6  ổ(Md); and
(d) fi(U^=1A n ) = lira n { A n ) for any increasing sequence {A„} c  B ( R d).

Then as shown by G raf (1980), a necessary and sufficient condition for s  to admit
a. Radon - Nikodym derivative with respect to T  is (5, T) has the SDP and 5 < T .

Let {At  : t €  M+ } be a family of Borel sets in R d. A decreasing family { B t : t €
R d} c  B{Kd) is defined as follows :

Bo = R d ; B t — n qeQ(t)Aq for each t > 0,

where Q (t) = [0-1) n  Q. Since Q (i) is countable, it follows th a t  B t is a Borel set for every 
t e  R+. We define a  function f  : R d — > 1R+ by the following formula:

f 0 if X e ni£Q +Bt
fix') —— s ' '

1 su p { t \ x  €  B t }, otherwise.

It is easy to see th a t

Bị  =  { /  >  É} u  Boo and  { / < * }  =  B ct u  Boo, for every* e  (0, + 0 0 ), (9)

where -Boo =  n*£Q+i3f Consequently, /  is a Borel measurable function.
Now we prove the sufficient condition of the Radon - Nikodym Theorem for submeasures

possessing SP in R d.
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4.2. T h e o re m .  Assumse that 5, T  G Co- Then (S, T )  has the R N P  i f  there exists a 
family { A t ',t G M+ } c  B (R d) satisfying following conditions:

(i) lim S { B n ) = lim T ( B n ) =  0;

(ii) S ( Dt \  At )  = T ( B t \  At )  =  0 for every t €
(iii) For any s, t e  R + with s < t and A  G B (R d),

s[T(i4 n  As) -  T ( A  n  At)} ^  S ( A  n  As)  -  S ( A  n  At)

^  t [T( A  n  As)  -  T ( A  n  At)}.

Proof. The first we establish some relations between families { At } ,  { B t } and  { / > * } .  

C la im  1. For every A  G B (R d) we ha.ve

S ( A ) =  lim S ( A  n  BVj  =  lim S ( A n { f < n \ )
n —>oo n —>oc

T{A)  =  lim T(A n  B cn) =  lim T{A n  { /  < n}).
71—* oo n —>oo

Proof. For any n E N, we get

n  ^  5(i4) ^  5 (A  n  B n ) + S ( A  n  S£) 

^  S ( B n ) +  5(i4 n  £ £ ) ,

hence by (i) we have
5(i4) = lim 5(i4 n  Bf).

n —»oo

From (9) and S ( B oo) ^  lim S(.Bn) =  0 we deduce
71—»00

S(A n {/ < n}) = S [>1 n  (Bị  u 5«,)] = S{A n ££), 

and the result follows. Similarly, 

T(A)  =  lim T(i4 n B®) =  lim r( i4  n  { /  < n}).n—>00 71—>00

C la im  2. 5 (A t \  z?t) =  T(A( \  B t ) =  0 for every Í € M+ .
Proof. Let >1 =  At \  As  in (iii), then we obtain

- s T ( A t \  As) < -S ( A t \  As) < —tT(At \  Aa)

for any s , t  £ R + with s <  t. It brings about

T ( A t \ A 3) = S ( A t \ A a) =  0. (10)

for any s, Í e  R + with s < t. Observe tha t

At \  Bị  = A t \  ( n 9€Q(t)Ạ ,) =  U9eQ(t)(i4t \  A q).



Since q < t. we obtain from (10) and s ,  T  G Co,

S { A t \  Bf )  = T ( A t \  Dt ) =  0 for every t € R + ■

C la im  3. For any t € R + and A  6 ổ(Md),

S { A n A t ) = S ( A n { f  > t } )  and T ( A n  At)  = T ( A n  { f  > t}).

Proof. Note that
A n At = [A n (At \  B t )] u {A n At n Bt).

By Claim 2, we obtain S ( A n  At )  =  S { A n  At  m ? ( ) .  Similarly we can obtain S ( A f \ B t ) = 
S ( A  n A t  n B t). Thus, with (9) and 5(Boo) = 0  we get

S{A n At)  =  S ( A  n Bt)  =  5ỊẨ n ( { /  > t} u Boo)] 
= S[(A n { /  > t } )  U ( A D  Boo)] = S( A  n { /  > t}).

A similar reasoning is applied to T.

C la im  4. For any s , t  €  M+ with s <  t and A  € B{ Rd),

s[T(A n { /  > s})  -  T ( A  n { /  > t})} ^  S{ A  n { /  > 8}) -  S{ A  n { /  > t})
^  t[T(i4 n {/ > s}) -  T(A  n {/ > t})].

Proof. By (iii) and Claim 3,

s[T{A n {/ > s}) -  T(A n {/ > t»] = s[T(A n As) -  T(A n Ẩt)]
^ S(A n As) -  S{A n At)
= S(A n { / > s}) -  S(i4 n { / > t}).

Similarly we can obtain

S( A n { /  > s} )  -  S ( A  n { /  > t}) ^  t [T(A n { /  > s}) -  T(A n { /  > i})].

Now we are able to complete the proof of our main result.

C la im  5. For /  : R d — > R + be given in (8) we ha.ve

S ( A)  =  [  f d T  for every A  6 ổ (R d).
J A

Proof. Let v4(n): = . 4 n { / < i i }  for every A  € B ( Rd) , n  €  N. Then as A{n)  c  { /  < n},

r  T ( A ( n ) n { f  > t } ) d t =  [  T{A{ĩ i )  n  i f  > (11)
Vo Jo
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We first prove th a t

S( A( n ) ) f  T ( A ( n )  n { /  >  t})dt for every n  e N. 
Jo



Let 0 =  to < tị  <  • • • <  tk = n ì
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Sk =

k

-  t i - i ) T ( A { n )  n  { /  >  t i } ) ,
2—1

and k
Sk = -  í i _ i ) T ( A ( n )  n  {/ > ti-1 }).

i — l
Then we have

Sk <  [  T ( A ( n ) n { f  > t } ) d t  <  Sjfe.
JQ

Note that as max{£i — t i - ị ] i  = 1, • • • fc} —» 0,

-> [  T(A(n)  n  { /  >  í})dí, S k -> [  T ( A ( n ) n { f  >t})dt .  (12)
Jo */0

Using the first inquality in Claim 4 and the fact th a t  S ( A ( n )  n  { /  >  t k})  =  T( A( n )  n  { /  >  
ủfc}) =  0, we obtain

k
s k =  -  t i - i ) T ( A ( n )  n  { /  >  i i } )

2=1
/c fc

= ijT (Ẩ(n) n {/ > í,}) -  (^(n) n {/ -  **})
2—1 i= l
k-1

=  u [T(A(n) n  { / > ti}) -  T(A(n) n  { / > ti+1})]
2—1
fc-1

^ £  [S(A(n) n {/ > t j )  -  S(A(n) n {/  > t i+1})]
1=1

=  5 ( i 4 ( n ) n { / > i i } ) ^ 5 ( i l ( n ) ) .

Similarly, using the second inequality in Claim 4, Sk > S ( A( n) ) .  Therefore

Sfc ^ 5 (A(n)) ^  Sfc.

Combining (11) and (12), we obtain

S { A ( n ) ) =  Ị T ( A ( n )  n  { /  >  t ] ) d t  — [  f d T .
*/o JA{n)

By Claim 1 we have

S ( A ) =  l i m  S ( i 4 ( n ) )  =  [  T ( A  n  { /  >  t } ) d t  =  [  f d T .
n->°° Jo J a
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Consequently, we reach the  conclution of the Theorem 4.2.

R e m a rk .  1. Observe th a t  conditions (i) - (iii) imply s  <  T.  In fact, assumse that
T( A)  = 0. Then from Claim 4,

S { A  n  { /  >  s}) -  S { A  n  { /  >  t})  =  0 for every s , t  e  R + with s < t.

Let t = n —> oo, we obtain  from (i),

S( A  n { /  > s) =  lim S{ A  n { /  > n}) ^  lim S{A n B n) = 0,
'  IJ — / n_>oo n->oo

for every s € R + .
It follows th a t  S ( A  n  { /  >  0}) =  S( A)  =  0.

2. (5, T) has the  R N P implies (ii) and (iii) (see, [6]).
The following example is a pair (S ,T )  of submeasures in R d which satisfies the 

conditions of Theorem 4.2, and hence (S ,T )  has the RNP.

4.3. E x a m p le .  Let T  be defined as in the Example 3.7. Define s  : B ( R d) — * R + by

r 0 if An [0,1] = 0
S{A)  I 1 -  inf{x : X € A  n  [0,1]} if A n  [0,1] Í  0.

Then S , T  € Co (T is not capacity in the sence of Graf) and (S ,T ) has the RNP.

Proof. It is easy to see th a t  S , T  e C, .  Define a family { A t ;t e  R + by

_  f [0,1 -  t] if t ^  1
^ “ 1 0  if t >  1.

Then the family { A t ;t  €  M+ } satisfies conditions (i) - (iii) of Theorem 4.2.
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