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ON THE HAHN - DECOMPOSITION AND THE RADON
- NIKODYM THEOREM FOR SUBMEASURES IN R”

Le Xuan Son, Nguyen Thi Tu Ngoc
Vinh University, Nghe An

Abstract. In this note we characterize the pairs of submeasures in R? possessing a
certain Hahn - decomposition property and prove the sufficient condition of the Radon -
Nikodym Theorem for submeasures in R4 having the stable property (SP).

1. Introduction

As we have seen, the Hahn - decomposition of a signed measure is one of the
main tools in the measure theory. In addition, it is a base for proving the Radon -
Nikodym Theorem, a fundamental theorem in the measure theory, probability theory and
mmathematical statistics. The standards of the Hahn - decomposition and the Radon -
Nikodym Theorem have been extended by Graf to a new research area, that is capacity[4].

In this note we are going to extend the Hahn - decomposition and the Radon
~ Nikodym Theorem in measure spaces to one space of submeasures in R? which have
the stable property. The paper is organized as follows. In section 2 we give the notion
of submeasure in R% and prove some properties of them. In section 3 we characterize
those pairs of submeasures in R? which possess a certain Hahn - decomposition property.
Section 4 is devoted to the Radon - Nikodym derivaties for submeasures in R< which have
the stable property.

2. Submeasures in R¢

We first recall the various notion from [7] which will appear in the paper.
Let K(RY), F(R?), G(R?) and B(R?) denote the families of compact sets, closed
sets, open sets and Borel sets in R?, respectively.

9.1. Definition. A set - function T : B(R?) — [0;00) is called a submeasure in R if
the following conditions hold:

1. T(0) =0

2. T(AUB) < T(A) + T(B) for any Borel sets A, B;

3. T(A) =sup{T(K): K € K(R?), K C A} for any Borel set A € B(R4);

4. T(K)=inf{T(G):G € G(R%),G D K} for any compact set K € K(R9).

From the definition it follows that any submeasure in R? is a non - decreasing and

finite subadditive set - function on Borel sets of R¢. Morever, we have

2.2. Proposition. ([7]). Let T be a submeasure in Re. If A € B(R) with T(A) =0,
then
T(B)=T(AUB) forevery B € B(RY).
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2.3. Proposition. ([7]). Any capacity is upper semi - continuous on compact sets,

e, if Ky DKy D - DK, D isa decreasing sequence of compact sets in R% and
Mooy Kn = K, then nli_l)& T'(K,)=T(K) for any capacity T.

2.4. Proposition. Any submeasure is lower semi - continuous on open sets, .i.e, if
Gy CGyC---C G, C - Is a increasing sequence of open sets in R¢ and Lo G = 65,
then lim T(G,) = T(G) for any submeasure T.

n— oo

n=1

Proof. For given € > 0, by (3.) in the definition of submeasures, there exists K €
K(R?), K C G such that

T(K) > T(G) -

We claim that, there exists ny € N such that
K cdaG, for every n > ng.

Indeed, assume, on the contrary, that K \ G,, # 0 for all n. Since K is a compact set and
Gn are open sets, {K \ G} is a decreasing sequence of non - void compact sets. Hence

ﬂK\G K\(|JGn) =K\G#0
n=1 n=1

giving a contradition to K C G. The claim is proved. It follows
T(Gn) > T(K)>T(G) — ¢, for every n > ny.

Therefore
lim T(G,) > T(G) —e.

n—oo

Since ¢ is arbitrary, then we have
lim T(Gn) > T(G).

Combinating the last inequality with T(G) > lim T(G,) we get

n—oo

lim T(G,) =T(G).

n—o0

The proposition is proved.
From Proposition 2.4 we have the following corollary
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2.5. Corollary. Any submeasure T in R? possesses the countable subadditivity on
G(R?) and K(R?).

| Proof. Firstly, let {G,}22, be a sequence of open sets in R? and let T be a capacity in
RY. For n € N, set

5-Uoe
k=1

‘Then {B,}2, is a increasing sequence of open sets and | J;_, Ba = U~ Gn, by Propo-
sition 2.4 we have

T (UL Gn) =T (Upl1 Bn) = lim T(Bn) = lim T (Up=1Gk)
< lim (3 T(Gw) = D_T(Gn).
k=1 n=1

We will show that T has o - subadditive property on K(R?). Let {K, }n2; be a sequence
of compact sets in RY. Given € > 0, for every n, by (4.) in definition of submeasures, there
exists G, € Q’(Rd) such that G,, D K, and

T(Gn) < T(Kp) + Qin

Hence

Since € is arbitrary, we get

3. The Hahn - decomposition for Submeasures in R¢

3.1. Definition([4]). Let S,T : B(R%) — R be submeasures in R4,
(a) The pair (S,7T) is said to possess the weak decomposition property(WDP) if, for
every a € R*, there exists a set A, € B(R?) such that

aTs, < Sa, and aTpe > Sac.

(b) The pair (S,T) is said to possess the strong decomposition property(SDP) if, for
every a € R™, there exists a set Ay € B(Rd) such that the following conditions
hold:
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(i) For A, B € B(R); B C A C A, implies
a(T(A) - T(B)) < S(A) — S(B).

(ii) For A € B(RY); a(T(A) ~T(AN Ag)) > S(A) - S(ANA,).
Observe that (SDP) implies (WDP) and if (S,T) possesses (WDP) then so does
(T, S) (see [4]).

3.2. Definition. Let T : B(B?) — R* be a submeasure in R?. T is said to possess
stable property(SP) if, for any sequense of Borel sets {4, } C B(R?) satisfies T'(A,) = 0 for
every n, then T(|J,_,) = 0. By Cy we denote the family of all submeasures in R which
possess SP.

The following result is proved by Graf([4]) for the submeasures with the lower semi
- continuous property. Here we will prove for the capacities in R% which possess the SP.
Note that the lower semi - continuity implies the o— subadditivity which implies the SP.

3.3. Proposition. Assume that S,T € Cy. Then the following conditions are equivalent:
(i) (S,T) has WDP.
(ii) There exists a Borel measurable function f : R — [0; +o0] such that
oT{s2a) S S{s2a) and aT{s<a} 2 S(f<a} (1)

for every a € R.

Proof. (ii) = (i). Let f be a Borel measurable function satisfying (1). For each o € R*,
set

Then we have
aly, <S4, and O{TA& > SA&'

It means that (S,7") has the WDP.
(i) = (ii). For each & € R* let A, be as in the definition of the WDP. A decreasing
family {B, : o« € R*} is defined as follows.
By=R? ; B, = N{Ap ; B € Q(a)} for every a > 0,

where Q(a) = [0; ) NQ (Q denotes the set of all rational numbers). We define a function
f:R% — [0; +00] by Graf’s formular :

f(z) = sup{e; z € B,}.

We will show that
By ={f>a} forevery o e R". (2)

Indeed, o > 0 then, by the definition, 2 € B, implies f(z) > a. Conversely, if z € {f > a}
then, for every 8 € Q(a), there exists o’ € (8, a)NQ with z € B, . Thus we deduce z € Ag.
Since # € Q(a) is arbitrary we obtain

z € N{Ap; 3 € Q(a)} = Ba.
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Since By = {f > 0} our claim is verified. Because B, € B(R?) for every a € R the
function f defined above is also Borel measurable.
Next we will prove that

S(Aa NAZ) =T(AaNAG)=0forall a,f € R* with 8 < a. (3)
From the definition of A, and Ag we deduce
aT(Aa N AG) < S(Aa N AZ) < BT(Aa N Aj).
This inequality implies
T(Aa N AjZ) = 0= S(A. N Aj).

We claim that
aT(f>ay € Sifsa} for every o € RT. (4)

If & = 0 then there is nothing to show. For o > 0, let B C {f > a}, B € B(R?). For every
3 € Q(a) we have B C Ap, therefore BT (B) < S(B). Since 8 € Q(a) is arbitrary then
oT(B) < S(B).

That means that (4) is proved.
To complete the proof of (i) =(ii) we will show that

aTpe > Spe for every a € RY. (5)

If o = 0 this inequality is satisfied by the definition of By. For a > 0 let B € B(R%) with
BN B, = 0 be arbitrary. We have

B = [BN (Usea45)] U [B N (Usear)45)]

= [Usea (BN A5 U [BN (Msea4s)] = U (BN A3). (6)
BEQ(a)

Because S possesses the SP and by (3), it follows
S (Ugegia) (B N Aa N 45)) < S (Ugega)(4a N 45)) = 0. (7)
From (6), (7) and S € Cp we get
S(B) £ S(BNA,)+S(BNAG)
= S [(Upeq(a) (BN A%)) NAa] + S(BNAG)
= S (Ugeg(a) (BN Aa N A3)) + S(BN A)
= S(BNAS) < aT(BNAS) < aT(B).
(5) is proved.
3.4. Definition. Assume that S,T € Cy.
(a) If (S,T) has the WDP then every Borel measurable function f : R? — [0, +00]

such that (1) is satisfied is called a decomposion function of (S,T).
(b) Two Borel measurable functions f,g : R? — [0, +00] are called T — equivalent if

T({f#g})=0.

Then we have
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3.5. Proposition. Let S,T € Cy and (S,T) has the WDP. Then any two decomposition
functions of (S,T) are S— and T— equivalent.

Proof. Let f,g : RY — [0, +00] be decomposition functions of (S,T). For p,q € Q* =
QNRT with p < ¢ we define

Apq=1{f<p}n{g>gq}.

It is clear that
{f<9}=U{4p4; g€ Q",p< g}

By Proposition 3.3 we have

qT(Ap,q) < S(Ap,q) < pT(Ap,) for p,ge Q*,p < gq.
It follows that
T(Ap,) =0=S(Ap,) forp,ge Q*,p<q.

Since S, T possess the SP, we get

S{f<g})=5(U{4pq; g€ Qt,p<q}) =0,

and
T{f <g}) =T (UApq; pa€Qt,p<q})=0.

Exchanging the role of f and g leads to

S{g<fH=T({g< f}=0.

Therefore,
S{f#9}) <S{f<gh)+S({g< f})=0,
and

TH{f#9) <TH{f<gh)+T{g< f})=0.

Hence f, g are S— and T'— equivalent.
The following proposition is proved by Graf for the set - functions with the monotone
property and the finite subadditive property so it is true for the submeasures in R9,

3.6. Proposition. Let S,T : B(RY) — R* be submeasures in R?. Then (S,T) has the
SDP if only if the following holds :
(i) (S,T) has the WDP.

(ii) For every a € R*, for every A € B(R?) with aT's < Sy, and for every B € B(R?)
with B C A the inequality
a(T(A) -T(B)) < S(A) — S(B)

1s satisfied.
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(iii) For every a € R*, A € B(R?), and B € B(RY) with B C A,aTp < Sp, aTa\p >
Sa\p the inequality
a(T(A) - T(B)) = S(A4) - 5(B)
is satisfied.
The following example is a pair of submeasures which possesses the WDP but does
not have the SDP.

3.7. Example. Let S,T : B(R) — R™ be set - functions are defined by

0 if A=10
S(A)=<¢ 1 if 1¢ A#D
2 if 1eA
and
0 if A=0
T(A)=4¢ 2 if [0,1]]CA
otherwise.

Then S, T have the following property:
(i) S,T € Cp.
(i1) 7T is not lower semi - continuous.
(iii) (S,T) has the WDP, but
(iv) (S,T) does not have the SDP.

Proof. (i). It is easy to see that S, T satisfy the conditions (1.) - (4.) in the definition of
submeasues and Definition 3.2.
(i1). For each n € N we defined

An:[O;l—i-]u{l}.

Then {A,}32, is a increasing sequence of Borel sets in R and UpZ; A, = [0, 1]. Morever
T(A;) =1 for every n. Therefore

T(UZ An) =2> 1= lim T(An).

n—oo

Thus T is a capacity in R but is not capacity in the sence of Graf.
(iii). Define a Borel measurable function f : R — R* by

1 if z#1
2 if z=1.
We will show that f satisfies (1). We consider following cases:

Case 1. a < 1. Note that T(A) < S(A) for every A € B(R) and {f < a} =0,
which implies (1) holds.

flz) =

Case 2 . 1 < a < 2. We have

{fz2a}={1} ; {f<e}=R\{1}.

Hence, (1) is satisfied.
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Case 3 . o > 2. Note that

{fza}l=0; {f<a}=R.
Then we have
aT(A) > 21> S(A) for every A€ B(R),A #0.

Hence. (1) is satisfied in this case.
By Proposition 3.3, (S,T) has the WDP.
(iv). For a = %, aTy < Sy for every A € B(R). Let A = [0,1], B = {1}. Then

J

S{A)=8(B)=T(A)= 2, T{B) = 1. Hence

It means that the condition (ii) in Proposition 3.6 is violated for (S,T"). Therefore, (S,T)
does not have the SDP.

3.8. Definition. Let S, T : B(R?) — R™* be capacities in R%. S is said to be absolutely

continuous with respect to T and write S < T if, for every A € B(R?), T(A) = 0 implies
S(A4) = 0.

3.9. Proposition. Let S,T € Cy with (S,T) has WDP. Morever let f : RY — [0, +o0]
be a decomposition function of (S,T). Then the following conditions are equivalent:

(i) S<T.

(ii) YA€ B(RY);S5(A) =0« [, fdT =0.

Proof. Clearly (ii) implies (i). To prove the converse let A € B(R?) be arbitrary.
If S(A) = 0 then we deduce that, for every a € R,

aT(AN{f>a}) < S(AN{f >a}) <S(A) =0.

This last inequality implies T(AN{f > a}) = 0 for all « € (0, +00). This, in turn, leads
to

f fdT = / T(AN{f > a})da = 0.
A 0
If fA fdT = 0 then, by the definition of the integral
T(AN{f > a}) =0
for all @ € (0, +00). Sinice § <« T this implies
S(AN{f 2 a}) =0
for all e € (0, +00), hence, by S has the SP,

S(AN{f>0}) = S(U,eqr (AN{f 2 a})) =0,
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where QF = QN (0, +00).
For all o € (0, +00), since AN {f =0} C {f < a} for all @ > 0 we have

oT(AN{f=0}) > S(An{f =0}).
This implies
S(AN{f =0}).
Hence we obtain

S(A) < S(AN{f=0})+8(AN{f>0}) =0

4. The Radon - Nikodym derivatives for Submeasures in R¢

4.1. Definition ([6]). Let S,T be monotone set functions on R¢. We say that (S,T) has
Radon - Nikodym property(RNP) if there exists a Borel measurable function f : R4 — R*
such that

S(A) = f fdT for every A€ B(RY).
A

Then the function f is called the Radon - Nikodym derivative of S with respect to 7" and
written as f = dS/dT.
As in the case of measures, we see that if T(A) = 0, then S(A) = 0. However, unlike
the situation for measures, this condition of S <« T is only a necessary condition for S
to admite a Radon - Nikodym derivative with respect to 7. Depending upon additional
properties of S and 7', sufficient conditions can be found. For example, suppose that S
and T both belong to the class of capacities p of the following type (Graf, [4)):
(a) pu(0) =0
(b) u(A) < u(B) for any A,B € B(R?) with A C B;
(¢) p(AU B) < pu(A) + p(B) for any A,B € B(R%); and
(d) p(USLAn) = 11_12o 1(Ay) for any increasing sequence {An} C B(RY).
Then as show1;1 by Graf (1980), a necessary and sufficient condition for S to admit
a Radon - Nikodym derivative with respect to T is (S,T) has the SDP and 5§ < i
Let {A; : t € RT} be a family of Borel sets in R%. A decreasing family {B; : t €
R?} ¢ B(RY) is defined as follows :

Bo=R? ; B;=N4cqu)A, foreacht >0,

where Q(t) = [0;t) N Q. Since Q(t) is countable, it follows that B is a Borel set for every
¢t € R*. We define a function f: R4 — R* by the following formula:

0 if € Nyeg+B
1@ ={ oot € o B ®)
sup{t;z € B:}, otherwise.
It is easy to see that
By = {f > t} U B and {f <t} = B{f U B, for everyt € (0, +00), 9)

where Bo, = Nieg+B:. Consequently, f is a Borel measurable function.
Now we prove the sufficient condition of the Radon - Nikodym Theorem for submeasures
possessing SP in R%.
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4.2. Theorem. Assumse that S,T € Cy. Then (S,T) has the RNP if there exists a
family {As;t € Rt} C B(RY) satisfying following conditions:
(i) m S(B,)= lim T(B,) =0;
(ii) S(B\ A)) = T(B;\ A) = 0 for every t € R*:
(iii) For any s,t € RT with s <t and A € B(R?),
sT(ANA,) —T(ANA)] < S(ANA,)—S(ANA)
StT(ANA) —T(AN Ay

Proof. The first we establish some relations between families {A,}, {B:;} and {f > t}.
Claim 1. For every A € B(R%) we have

S(A) = lim S(ANBE) = 11m S(ANn{f < n})

n— 00

and

T(d)= lim T(ANBL) = hm T(AN{f <n}).

n—00

Proof. For any n € N, we get
S(ANB;)<S(A) < S(ANB,) + S(AN BE)

< 5(Bn) + S(AN By),

hence by (i) we have
S(A) = lim S(AN B;).

n—oo

From (9) and S(B«) £ lim S(B,) = 0 we deduce

S(ANn{f <n})=SAN(BUBx)] = S(ANBS),
and the result follows. Similarly,

T(A) = lim T(ANB;) = lim TAﬁ{f<n}

n—oQ

Claim 2. S(A;\ B;) =T(A;\ B:) =0 for every t € RY.
Proof. Let A = Ay \ A, in (iii), then we obtain

—sT(Ae\ As) < —S(Ae\ As) < —tT (A \ Ay)
for any s,t € Rt with s < ¢. It brings about
T(A;\ A,) = S(A; \ A,) = 0. (10)

for any s,t € R with s < t. Observe that

At \ By = A \ (Ngeqqe) Aq) = Ugeqqe) (Ar \ 4y).
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Since ¢ < t, we obtain from (10) and S, T € Cy,

S(A¢\ By) =T(A:\ By) =0 forevery t € RT.

Claim 3. For any t € R* and A € B(RY),
S(ANA) =S(ANn{f>t}) and T(ANA)=T(AN{f >1t})

Proof. Note that A
ANA,=[AN (A \ By)]U(AN A N By).

By Claim 2, we obtain S(AN A;) = S(AN A, N By). Similarly we can obtain S(AN By) =

S(AN A; N By). Thus, with (9) and S(B) = 0 we get

S(ANA,) = S(ANBy) = S|AN ({f > t} U Bs)]
= S[(AN{f > ) U(ANBx)| = S(AN{f 2 t}).

A similar reasoning is applied to T.

Claim 4. For any s,t € Rt with s <t and 4 € B(R?),

STAN{S > s}) - TAN{f 2 ] < S(AN{f 2 s}) = S(AN{f > 1})

=
<HT(AN{f 2 8}) - T(AN{S = ).
Proof. By (iii) and Claim 3,

SITAN{f > s}) = T(AN{f > t})] = s[T(AN A,) - T(AN Ay)]
< S(ANA,) — S(AN Ay)
= S(AN{f 2 s}) ~ S(AN{f 21}).

Similarly vw can obtain
SIAN{S > s}) = SAN{f > 1)) SHT(AN{f > s}) - T(AN{f 2 t})].

Now we are able to complete the proof of our main result.

Claim 5. For f:RY — R™ be given in (8) we have

S(A) = f fdT  for every A€ B(R?).
A

Proof. Let A(n): = AN {f < n} for every A € B(R?),n € N. Then as A(n) C {f <n},

¢ 0
We first prove that

S(A(n)) = ./000 T(A(n)N{f > t})dt for every n € N.

(11)



48 Le Xuan Son, Nguyen Thi Tu Ngoc
Let0=ty<t;) <:--- <t =n,
k
sk=) (ti—ti-))T(A(n) N {f > t.}),
i=1

and
k

S = Z<t —t-1)T(A(R) N {f 2 tia}).

Then we have

Sk & fn T(An)N{f >t})dt < Sk.
5 ;
Note that as max{t; —t,_1;1=1,---k} = 0,
Sk — / TL) N {f > t})dt Sk — / ﬂ {f > t} : (12)

Using the first inquality in Claim 4 and the fact that S(A(n)N{f > tx}) = T(A(n)N{f >
tr}) = 0, we obtain

=Y [T(An)N{f>t:}) - T(AR)N{f > tit1})]

< Z [S(A(n) N {f = t:}) = S(A(n) N {f = tit1})]
= 5(A(n) m{f > t1}) < S(A(n)).
Similarly, using the second inequality in Claim 4, Sy > S(A(n)). Therefore

Sk g S(A(n)) S Sk.

Combining (11) and (12), we obtain

stam) = [ T(Am N {f 2 ae= [ | Jar

By Claim 1 we have

n— o0

S(A) = lim S(A(n))z/:o T(Aﬂ{fzt})dtzfA fdT.
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Consequently, we reach the conclution of the Theorem 4.2.
Remark. 1. Observe that conditions (i) - (iii) imply § <« T. In fact, assumse that
T(A) = 0. Then from Claim 4,

S(AN{f>s})—S(AN{f>1}) =0 forevery s,t € RT with s<t.

Let t = n — co, we obtain from (i),

S(AN{f 25)= lim S(AN{f 2 n}) < lim S(ANB.) =0,

n—o0
for every s € R*.
It follows that S(AN{f > 0}) = S(A) = 0.
2. (S,T) has the RNP implies (ii) and (iii) (see, [6]).
The following example is a pair (S,T) of submeasures in R? which satisfies the
conditions of Theorem 4.2, and hence (S,T") has the RNP.

4.3. Example. Let T be defined as in the Example 3.7. Define S : B(R¢) — R* by

0 if AN[0,1]=0
1 —inf{z:z€ AN[0,1]} if AN[0,1]#0.

Then S,T € Cy (T is not capacity in the sence of Graf) and (S,T) has the RNP.

S(A) = {

Proof. 1t is easy to see that S,T € C,. Define a family {A¢;t € R* by

=

{[O,l—t] if t<1
0 if t5 1.

Then the family {A;;t € R*} satisfies conditions (i) - (iii) of Theorem 4.2.
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