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THE APPROXIMATE CONTROLLABILITY
FOR THE LINEAR SYSTEM DESCRIBED
BY GENERALIZED INVERTIBLE OPERATORS

Hoang Van Thi
Hong Duc University

Abstract. In this paper, we deal with the approximate controllability for a linear system
described by generalized invertible operators in the infinite dimensional Hilbert spaces.
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0. Introduction

The theory of right invertible operators was started with works of D. Przeworska-
Rolewicz and then has been developed by M. Tasche, H. von Trotha, Z. Binderman and
many other Mathematicians. By the appearance of this theory, the initial, boundary and
mixed boundary value problems for the linear systems described by right invertible op-
erators and generalized invertible operators were studied by many Mathematicians (see
4, 8]). Nguyen Dinh Quyet considered the controllability of linear system described by
right invertible operators in the case when the resolving operator is invertible (see [10,
12, 13]). These results were generalized by A. Pogorzelec in the case of one-sized invert-
ible resolving operarors (see [6, 8]) and by Nguyen Van Mau for the system described
by generalized invertible operators (see [3, 4]). The above mentioned controllability is
exactly controllable from one state to another. However, in infinite dimensional space,
the exact controllability is not always realized. To overcome these restrictions, we define
the so-called Fl(r)—approximately controllable, in the sense of: ” A system is approximately
controllable if any state can be transfered to the neighbourhood of other state by an ad-
missible control”. In this paper, we consider the approximate controllability for the system
(LS)g of the form (2.1)-(2.2) in infinite dimensional Hilbert space, with dim(ker V') = +c0.
The necessary and sufficient conditions for the linear system (LS)q to be approximately
reachable, approximately controllable and exactly controllable are also found.

1. Preliminaries

Let X be a linear space over a field of scalars 7 ( F = R or C). Denote by L(X)
the set of all linear operators with domains and ranges belonging to X, and by Lo(X) the
set of all operators of L(X) whose domain is X, i.e. Lo(X) ={A € L(X) : domA = X}.

An operator D € L(X) is said to be right invertible if there exists an R € Lo(X)
such that RX C domD and DR = I on domR (where [ is the identity operator), in this
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case R is called a right inverse of D. The set of all right invertible operators of L(X) will
be denoted by R(X). For a given D € R(X), we will denote by Rp the set of all right
inverses of D, i.e. Rp = {R € Lo(X): DR =I}.

An operator F € Lg(X) is said to be an initial operator for D corresponding to
ReRpif F?=F FX =kerD and FR = 0 on domR. The set of all initial operators for
D will be denoted by Fp.

Theorem 1.1. [8] Suppose that D € R(X) and R € Rp. A necessary and sufficient
condition for an operator F € L(X) to be an initial operator for D corresponding to R is
that

F=I—-RD on domD. (1.1)

Definition 1.1. [4, 5]

(i) An operator V € L(X) is said to be generalized invertible if there is an operator
W e L(X) (called a generalized inverse of V') such that

ImV C domW, InW € domV and VWV =V on domV.

The set of all generalized invertible operators of L(X) will be denoted by W(X).

For a given V € W(X), the set of all generalized inverses of V' is denoted by Wy.
(i) fV € W(X),W € Wy and WVW = W on domW, then W is called an almost

inverse of V. The set of all almost inverse operators of V' will be denoted by wi.

Definition 1.2. [4]

(i) An operator F") € L(X) is said to be a right initial operator of V € W(X)
corresponding to W € WL if (F(")2 = F(™) ImF(™) = kerV, domF(") = domV
and FUYW = 0 on domW.

(i) An operator F) € Lo(X) is said to be a left initial operator of V' € W(X) corre-
sponding to W € W}, if (FW)? = FO, FOX = kerW and FOV =0 on domV.
The set of all right and left initial operators of V' € W(X) are denoted by fg) and

]:é,”, respectively.

Lemma 1.1. [4] Let V € W(X) and W € Wy. Then

domV = WV (domV') @ kerV . (1.2)

Theorem 1.2. [4] Let V € W(X) and let W € Wy,.
(i) A necessary and sufficient condition for an operator F () € L(X) to be a right initial
operator of V corresponding to W' is that F() =T - WV ondomV.
(ii) A necessary and sufficient condition for an operator FU) € Lo(X) to be a left initial
operator of V' corresponding to W is that FO) = - VW on domW.
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Theorem 1.3. [14] Let XY, Z be the infinite dimensional Hilbert spaces. Suppose that
FeL(X,Z)and T € L(Y,Z). Then two following conditions are equivalent
(i) ImF C ImT

(ii) There exists ¢ > 0 such that ||T*f|| > c||[F*f| for all f € Z* (where Z* is the
conjugate space of Z ).

Theorem 1.4. (The separation theorem) Suppose that M and N are convex sets in the
Banach space X and M NN = (.

(i) If intM # Q then there exists a z* € X*,z* # 0, A € R such that
(x¥,z) <A< (2%,y), forevery z€ M,yeN.

(ii) If M is a compact set in X, N is a closed set then there exists z* € X*,z* # 0,
A1, A2 € R such that

(z*,z) < My < A2 < (z*,y), forevery z€ M,ye N.

The theory of right invertible, generalized invertible operators and their applications can
be seen in [4, 8]. The proof of Theorems 1.3 and Theorem 1.4 can be found in [2, 14].

2. Approximate controllability

Let X and U be infinite dimensional Hilbert spaces over the same field of scalars F
(F = R or C). Suppose that V € W(X), with dim(kerV) = 4+o00; F(") and F() are right
and left initial operators of V corresponding to W € W}, respectively; A € Lo(X), and
B e Ly(U, X).

Consider the linear system (LS)g of the form:

Vr =Az+Bu,ueU, BU C(V - A)domV (2.1)
Fz=x5, z9€kerV. (2.2)

The spaces X and U are called the space of states and the space of controls, respec-
tively. So that, elements z € X and u € U are called states and controls, respectively.
The element zy € kerV is said to be an initial state. A pair (xg,u) € (kerV') x U is called
an input. If the system (2.1)-(2.2) has solution z = G(zo,u) then this solution is called
output corresponding to input (zg,u).

Note that, the inclusion BU C (V —A)domV holds. If the resolving operator I—W A
is invertible then the initial value problem (2.1)-(2.2) is well-posed for an arbitrarily fixed
pair (zg,u) € (kerV') x U, and its unique solution is given by (see [Mbou])

G(zo,u) = EA(WBu + zg), where E4 = (I - WA)™!. (2.3)

Write
Rangy .,G = U G(zo,u) , zo € kerV. (2.4)
uelU
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Clearly. Rangpr,, G is the set of all solutions of (2.1)-(2.2) for arbitrarily fixed initial
state ry € kerV. This is reachable set from the initial state 2y by means of controls w € U.

Definition. Let the linear system (LS)g of the form (2.1) — (2.2) be given. Supposce that
G(.ry, 1) is defined by (2.3).
(i) A state r € X is said to be approzimately reachable from the initial state .y € kerV
if for any € > 0 there exists a control u € U such that [[o = G(rg, u)l] < €.
(ii) The lincar system (LS)g is said to be approximately reachable from the iuitial state
rg € kerVoif

Rangy ., G = X .

Theorem. The lincar system (LS)g is approximately reachable from zero if and only if

the identity

B*W*Eh =0, itimplies h=0. (2.5)
Proof. By Definition 2.1 the system (LS)g is approximately reachable from zero if
E.WDBU = X . (2.6)

According to Theorem 1.4, the condition (2.6) is equivalent to the thing that ithe X
siuch that

(h,x) =0,Ve e EaWBU, it follows h=0. (2.7)
Sinee EAWBU is a subspace of X, (2.7) holds if and ouly if that

(h,z) =0,Ye € EAWBU then h=0,

Ol

(h, EAWBu) =0, Vu € U, it implies h=4.
This is equivalent to that if

(B*W*E*h,u) =0,Yue U then h=0.

This implies that if

B*W*E%“h =0 then h=0.
Conversely. if the condition (2.5) is satisfied then (2.7) is also satisfied. and therefore we
obtain (2.6).

Definition 2.2. [4] Let the lincar system (LS)y of the form (2.1) = (2.2) be given and let

I’l(") & f\(f) be an arbitrary right initial operator for V.
(i) A state r; € kerV is said to be Fl(")-'r'cu.(:h.a,bl(: from the initial state g € kerV it
there exists a control w € U such that & = Fl(")G(.l?o,u). The state @ is called a

final state.
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(ii) The system (LS)g is said to be Fl(r)-controllable if for every initial statexy € kerV,
F{"(Rangy 4,G) = kerV .
(iii) The system (LS)g is said to be Fl(r)-controllable to z; € kerV if
71 € F{” (Rangy,z,G)
for every initial state zy € kerV'.

Definition 2.3. Let the linear system (LS)o of the form (2.1) — (2.2) be given. Suppose
that Fl(r) € f‘(f) is an arbitrary right initial operator for V.

(i) The system (LS)g is said to be Fl(r)~appro:rimately reachable from a initial state
g € kerV if

F{”(Rangy,¢,G) = kerV .

(ii) The system (LS)p is said to be Fl(r)-approximately controllable if for any initial
state z¢ € kerV, the following identity yelds

F{"(Rangy 4, G) = kerV.

(iii) The system (LS)g is said to be Fl(r)-approzimately controllable to z, € kerV if

z € Fl(r)(Ra.ngU_xoG) ,

for every initial state xg € kerV.

Lemma 2.1. Let the linear system (LS)y of the form (2.1) — (2.2) be given and let
F{" € Fy be an arbitrary initial operator. Suppose that the system (LS)q is F{n.
approximately controllable to zero and

FE4(kerV) = kerV . (2.8)

Then the final state x, € kerV is Fl(r)-approximately reachable from zero.

Proof. By the assumption, 0 € Fl(r)(RangU,zoG), for all zy € kerV. Therefore, for every
zo € kerV and € > 0, there exists a control ug € U such that

IF{7 EA(W Bug + o) < €. (2.9)
Condition (2.8) implies that for any z; € kerV there exists zo € kerV such that
FI(T)EAIQ =—-I.

The last equality and (2.9) together imply that for every z; € kerV and ¢ > 0, there exists
a control u; € U such that
IFEAWBuy — 11| <e.

It means that the final state z; is F l(r)-approxima,tely reachable from zero.
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Theorem 2.2. Suppose that all assumptions of Lemma 2.1 are satisfied. Then the systein
(LS)o is Fl(r)-a.pproximately controllable.

Proof. According to the assumption, for any zo € kerV and € > 0, there exists a control
ug € U such that
r &
|F7 EA(W Bug + o) < 5" (2.10)

By Lemma 2.1, for an z; € kerV there exists u; € U such that
(r) €
”Fl E W Bu; — CIJ1H < '2- : (2.11)

From (2.10) and (2.11) it follows that for zo,z1 € kerV and € > 0, there exists a control
u = ug + u; € U such that
IF EA(WBu + 20) — m1|| = |F{V EalWB(uo + 1) + zo] — 71|
< |F Ea(W Bug + 2o)l| + |1F\” EAW Buy — a1 |

<£+E—e
23

The arbitrariness of zg,z1 € kerV and € > 0 implies

F{")(Rangy »,G) = kerV .

Theorem 2.3. Let the linear system (LS)o be given and let Fl(r) € Fy be an arbitrary
initial operator. Then the system (LS)q is Fl(r)—approximately controllable if and only if
it is F\")-approximately controllable to every element y' € FIEAWV (domV).

Proof. By FI(T‘)E AWV (domV) C kerV, the necessary condition is easy to be obtained. To
prove the sufficient condition, we prove the equality

F{"EAWV (domV) & kerV] = kerV . (2.12)

Indeed, since (I — WA)(domV) C domV = WV (domV) @ kerV (by Lemma 1.1 and the
properties of the generalized invertible operators [Mcon, Mbou, Mal]), there exists a set
E C domV and Z C kerV such that

WVE®Z = (I - WA)(domV).
This implies EA(WVE @ Z) = Ea(I — WA)(domV) = domV'. Thus, we have

ker V = F{)(domV) = F\"EA(WVE & Z)
c F{DEA[WV (domV) & kerV]
C kerV.

Therefore, the formula (2.12) holds.
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Suppose that the system (LS)q is Fy"-approximately controllable toy' = F\" E,WV
y € domV, i.e. for every y € domV and arbitrary € > 0 there exists a control ug € U such
that

I Ea(WBuo + 20) = F{VEaWVy| < £ .
That is
r T &
IF{ EA(WBug + zo + 22) — FOEA(WVy + 22)|| < = (2.13)

where zo € kerV is arbitrary.

By the formula (2.12), for every z; € ker V, there exists y; € domV and z} € kerV
such that

21 = FEA(WVy + 2b) .

This equality and (2.13) together imply

|E7 Ea(W Buy + 2o +25) — m1l < 5 (2.14)

On the other hand, from 0 € FI(T)EAWVdomV and the assumptions, it follows that
(LS)p is Fl(r)-approximately controllable to zero, i.e.

0€ Fl(r)(R,angU_zoG) , for arbitrary zo € kerV .

Thus, for the element z7 € kerV there exists u; € U such that
(r) ! € -
“Fl EA(WBUl = .’132)“ < § ; (210)

Using (2.14) and (2.15 then for zo, z; € kerV and € > 0 there exist u = uy+u; € U
so that
|F{7VEA(WBu + xo)—21|| = | F{"” Ea[W B(uf + w1) + zo] — 21|
= |F{" Eo(WBU) + 2o + z}) — 21 + F\" EA(W Bu, — z3)||
< ||IFSVEA(WBu) + 20 + 25) — 1| + |[FV EA(W Buy — z4)||

<€+€—E
2 g

Thus,

Fl(r) (Rangy ¢,G) = kerV .

Theorem 2.4. Let a linear system (LS)o of the form (2.1) — (2.2) be given and let
F!('r) € ‘7__‘(;). Then the system (LS)y is Fl(r)—approximately reachable from zero if and
onlv if

B*W*E4Y(F'™*h =0 implies h=0. (2.16)
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Proof. Suppose that the system (LS)g is Fl(r)-approximately reachable from zero. We
then have

F"/(Rangy oG) = kerV .

[t means

FEAWBU = kerV . (2.17)
According to Theorem 1.3, the equality (2.17) holds if and only if for h € (kerV)* so that

(h,z) = 0, Yz € F"EAWBU, it follows that h=0. (2.18)
Because Fl(r)EARBU is a sﬁbspace of kerV, the condition (2.18) is equivalent to
(h,z) =0,Vz € F\VE,WBU = h=0,

or equivalently

(h, F\"EsWBu)=0,VueU = h=0.
[t is satisfied if and only if
(B*W*ES(F™)*h,u) =0,YueU = h=0. (2.19)

Hence, the condition (2.19) means that B*W*EE(FI(T))*h = OQimplies h = 0.
Conversely, if (2.16) is satisfied then (2.19) holds. This implies (2.17) and therefore
we obtaln

F{")(Rangy oG) = kerV .

Theorem 2.5. A necessary and sufficient condition for the linear system (LS)o to be
Fl(r)-controllable is that there exists a real number « > 0such that

IBW*EL(F) fll > allfll, forall fe (kerV)". (2.20)

Proof. Necessity. Suppose that the system (LS)g is Fl(r)-controllable, we have
F")(Rangy .,G) = kerV, for every zo € kerV'.

It follows that Fl(r)EAWBU — kerV. By Theorem 1.3, there exists a real number a >
0such that
I(FEAWB)*f|| > allfl|, forall fe (kerV)",

i.e. the condition (2.20) holds.
Sufficiency. Suppose that the condition (2.20) is satisfied. By using Theorem 1.3,
we obtain

F"EAWBU 2 kerV

Moreover, F 1(T)E AW BU C kerV. Since F l(r) is a right initial operator for V.. Consequently,
we have F\"V EAWBU = kerV. This implies

Fl(r)(R,angu,xoG) = kerV, for zy € kerV'.
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Theorem 2.6. The linear system (LS)g is Fl(r)—controﬂable to zero if and only if there
exists 3 > 0 such that

IB*W*EL(E7) fIl > BIELFS)Y fIl,  for every  f € (kerV)* . (2.21)

Proof. Suppose that the system (LS)q is Fl(r)-controllable to zero. We then have
0e€ Fl(r)(R,angU,IOG), for all zp € kerV .
Therefore, for arbitrary zy € kerV, there exists u € U such that
F{"EA(WBu + z9) = 0.

It implies that for z;; € kerW, there exists v’ € U such that Fl(r)EAx{’) = R EAWBY.
Thus, F\” E4(kerV) C F{" E4WBU. Using Theorem 1.3, there exists 3 > 0 such that

(L EAWB)*f|| 2 BI(FLEa)" ||, forall f € (kerV)".
Conversely, suppose that (2.21) is satisfied. By Theorem 1.3, it is concluded that
F{"Ea(kerV) C F{VEAWBU .
Hence, for every x¢ € kerV, there exists u € U such that
FEA(WBu + z0) =0,
i.e. the system (LS)g is Fl(r)—controllable to zero.

Example. Let X = C[-1, 1] be a space of all continuous functions defined on the closed

d
interval [—1,1], D = = is a right invertible operator in L(X), domD = C![-1,1]. The
t

operator R = [ is a right inverse of D. The initial operator for D corresponding to R is
0

defined as follows: (Fr)(t) = (I — RD)z(t) = z(0), for = € domD (see [Mcon)).

Let (Pz)(t) = 2(z(t) + z(-t)) , Q =I-P , X* = PX , X~ = QX , ie.
X =X"®X~. Put V= PD,W = RP we then have VWV = V on domV and
WVW =W on domW. Thus, V€ W(X) and W € WY, . By Theorem 1.2, the operators
FT) and FO are right and left initial operators for V corresponding to W, respectively,
which are defined by the following formulae

I

(F2)(t) = [(I = RPPD)2](t) = 3 (a(t) +a(~1)) = (Pz)(t),
(FOa)(t) = [(1 - PDRP)a](1) = [(I - P)al(t) = (Qz)(t).
Now consider the linear system:

V2 =alt+Bu , uweU=X" (2.22)
Fg =gy, o€ kerV , (2.23)
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where B € Lo(X ™), I is the identity operator and « is a given real number.
So we have is completely proved that kerV consists all even differentiable functions
defined on [—1, 1] and the problem (2.22)-(2.23) is equivalent to

(I —aRP)r = RPBu+zg. (2.24)

Since (I —aRP)(I+aRP) = (I+aRP)(I-aRP) =I1-a?RPRP = I-a*R*QP = I (by
()P = 0), for arbitrarily fixed u € U and zy € ker V, the problem (2.22)-(2.23) has a unique

solution

z = G(zo,u) = EoA(RPBu+x9), E4 = (I + aRP). (2.25)
From RPRP = 0 it follows that

(I + aRP)(RPBU + 19) = RPBU & {(I + aRP)zo} . (2.26)
The conditions (2.25) and (2.26) imply (see [Mbou])
Rangy .,G = RPBU & {(I + aRP)zo} . (2.27)

Thus, the system (2.22)-(2.23) is Fl(r)-approximately controllable for a right initial oper-
ator Flm of V if and only if

F"(RPBU & {(I + aRP)zo}) = kerV',
for every initial state zg € kerV.
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