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N guyen  C ong T oan  a n d  N guyen  V an  H u n g
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A b s tra c t: M orse potentia l, binding energy, therm al expansion and their relation 
have been studied. Analytica l expressions fo r the relation o f the b inding energy, 
linear thermal expansion coefficient w ith the Morse potentia l param eters have 
been derived. They lead to the determ ination o f these quantities by using 
ava ilable experim ental data. Num erical ca lcu lations have been carried ou t fo r 
several crystals, and the results are found to  be in good agreem ent with 
experim ent.

1. In tro d u c tio n

The pairwise potential functions have been used widely in the description of the solid 
states. One of the m ost successful function is the Morse potential function. T he purpose of 
this work is to study the relation between the binding energy, the therm al expansion and 
the param eters of the Morse function. Using these relations we determ ine the Morse 
potential param eters.

The paper will be started  with determ ining the average potential per each atom 
which depends on the Morse param eters and the lattice constant. A fter showing the 
dependence of the total potential on the various distance a  between the atom s, we carry out 
the relation formula of linear therm al expansion with the crystal properties. T he calculated 
results are compared to experim ent [3-7].

2. F o rm alism

We consider a  certain  atom inside the lattice. The total interaction potential of this 
atom with all the others in the crystal is given by this sum:

where <p(ri) is the single-bond potential between tha t atom and the i"' atom of crystal, i runs 
over all the num bers of atom s of the lattice (except the original atom). Use the Morse 
function we have:

(p(ri )= D .e '2a(r>'ro)-2 D e "2a(r'- >;>} = De2“r«e"2ai'' -2 D e ar“e _ar' = Dp v 2ar> -2D pe~ar' , (2)

(1)

where, D, a , r0 are the Morse param eters and

(3)
Thus, we can calculate the average potential per each atom by:

O - ị Ẹ M V * " ' '  -2 D p e-“ > )= ÌD p 2 j y 2“ r' - D u Ẹ e - » (4)
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For the cubic, bcc, fee, dia  or hep  crystals with the lattice constan t is o, the distance r, 
can be taken by the position coordinates nij, n,, 1; (see fig. 1).

j =  ^ l j2 + nij2 + n j a .a = M ; a .

in which M, = J l , 2 + m ,2 + n ,2

Therefore, ẹ  = 1 d |52] [ V 2"m‘* -  D p £ V “Mi*

2 1 1 \ ỵ  °
We can see that, the particu lar average potential (0 00) (IOC

depends on th e  lattice constant a: (p = <p(a) and its form is 
similar to the Morse potential form. " K - Thí «ordinale» positions

When th e  lattice vibrates, there is sm all change in the bond distance a  between the 
atoms, th is leads to sm all change in the potential of lattice. We can expand the potential 
function in term  of Taylor form around the equilibrium distance value a^:

= <p(ao ) + 0 .(a - a o)+ K 2( a - a o)z + K3( a - a 0)3 +... 

where u 0 = tp(a0 ) = — Dp2^ e " 2“M‘"H - D p ^ e 'aMifl° (9)

is the particu lar cohesion energy of the atoms are a t  rest, it  is the energy of sublimation of 
one atom.,

= - D a p 2 ^T M je -2aM'a° + D a p £ M 1e - aM'a° = 0 ;

K 2 = = 2 D a2p2^ M f e " 2aMia° - D a2p £ M ? e " “Mia° 
ỡa lao ' >

K 3 = = -4 D a 3p2 Y  M fe '2aMi"0 + D a3p y  M fe"aMia°
ổa L  ■ i

(10)

(11)

(12)

are the expansion coefficients.
The expression (9) shows that, the general potential function is anharmonic. T hat is

the reason why th e  crystal has therm al expansion. And we see: (a ) =  a 0 +  Aa *  a 0 , where,

Aa is the average expansion which we will determ ine. Define that: x=a-a0 (x) = Aa .

=> <p = <p(a0 )+ K 2x 2 + K 3x3 +... (13)
dtp _ 
dx ~

We suppose that, vibration is free so th a t  the average force equals zero (the atom 
oscillate only around its position).

, , , , -3K  3(x2\
(f) = ^ 2 K 2s - 3 K 3x ! )= 0= >  2K2(x) = -3 K j (x2) hay Aa . ------- (14)
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The atom vibration energy includes potential and kinetic energy. By approxim ation, 
the vibration potential and the kinetic energy have the sam e value and they equal to one 
half of the total energy

2(U) = 2(K) = (E) => (E) = 2(U> = 2{<p-ï>(a0)> = 2{K2x2 * K :1x :3* . . ) « 2 K 2(x 2) (15)

-3K j (x2 \  ,3 K rl(E)
= .A a  = ------— . (16)

2KS 4 K ,2

The therm al expansion coefficient is given by the formula:

1 cl(Aa) - 3 K 3 gjE) -3K „C  
fio ^  4a0K§ <5T 4 a0K |

where, Cr is the average particular therm al capacity per each atom. It can be determ ined by 
the experiment.

Now, let’s recall the equations (9-12) and (17). They set up a complete system of 
relations between ihe therm al expansion coefficient, the binding energy and the Morse 
potential param eter.

The eq. (10) leads to:

From (9) we obtain:

p =

2U0

p2] T V 2“ M'an - 2 p ^ V u,MiB|

Eq. (17) has now form: Y = —ẼĨ£ì£ l  = y(a,p,D). (20)
4a0K |

These relations helps us determ ine the unknown quantities when we have some 
information about the crystal and the atoms. This work can be executed by a PC (Personal 
Computer).

3. N u m eric a l c a lc u la tio n  a n d  c o n c lu sio n

The first and the second tables give us the results calculated for some kinds of atom 
and some types of crystal likes examples. In these tables we also give some comparison 
between the present theory resu lts and the experimental values.

Table 1. The thermal expansion coefficient:

Material a  (A*1) r0 (A") D(eV) y (10 CK') Ye,p (10 bK ')
Pb ựcc) 1.1836 3.733 0.2348 28.4 28.3
Cu (/cc) 1.3588 2.866 0.3429 17.7 17.5
Fe (bcc) 1.3885 2.845 0.4174 11.9 11.9
Ag ựcc) 1.3690 3.115 0.3323 18.9
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Table 2. The Morse potential paramet ers of some materials.

1 3 9

Material "YdO6 K') Cr(10MJ/K) a  (A01) p A") D<eV)
Present hExp. Pre. bExp. Pre. bExp.

Ni (fee) 13.4 3.82 1.417 1.420 51.4 2.780 2.780 0.4425 0.4205
Cu ực-c) 17.5 3.91 1.371 1.359 50.4 2.859 2.866 0.3-165 0.3429
Fe (bec) 11.9 4.16 1.391 1.389 52.6 2,848 2.845 0.487 0.4174
c  (dia) 0.91 1.38 7.020 5.104 1.547 3.664

a: reference [4]; b: reference [7].

The calculated resu lts presented in these tables are found to be in good agreem ent 
with experiment. T he Morse potentials are shown in  Fig. 2 and Fig. 3 compared to 
experim ent [4, 7],

expr. I I 
theory 11

Fig.2. The Morse potential function of Ni. Fig.3. The Morse potential function of Cu.

Acknowlegment: This work is suported in p a rt by the basic science research project No. 
41.10.04

R efe ren c es

1. N. V. Hung, Solid state Theory, VNU Publishing House-1999.
2. N, T. Bao Ngoe, N. V. Nha, Solid states textbook, VNU Publishing Mouse-1998.
3. David Halliday, al.: Fundamental o f Physics, VN Educational Publisher.
4. N.I. Kôskin, M.N. Sừkêvich: Fundamental Physical Handbook , Mir Moscow Publishing 

House-1980.
5. J. c . Slater, Int. to Chemical Physics (Me Graw-Hill Book Company, Inc. New York, 1939).
6. Charles Kittel, Int. to Solid State-Phys, John Wiley & Son ed., Inc. N. Y Chichester, 

Brisbane, Toronto, Singapore 1986.
7. L.A. Girifalco and V.G. Weizer: Phys. Rev. £114(1959) 687.
8. N. V. Hùng and J . J . Rehr: Phys. Rev. B  56(1997) 43.
9. I V Pirog, T  ] Nedseikina, I A Zarubin and A T Shuvaev, Jour, o f Phys. Condensed Matter 

14(2002)
10. V. Pirog, T. I. Ntídoseikina, I. A. Zarubin, A. T. Shuvaev, J. Phys.: Condens. Mat. 14(2002) 

1825.
11. V. Pirog, T. I. NedoseiMna, Phyaica B  334(2003) 123.
12. N. V. Hung and Dao Xuan Viet, VNU-Jour. Science Vol. 19, No. 2(2003) 19-24.


