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Abstract: In this paper we are concerned with bounded generalized random linear operators. It is 

shown that each bounded generalized random linear operator can be seen as a set-valued random 

variable. The properties of some special bounded generalized random linear operators and the 

random resolvent set of generalized random linear operators are investigated. 
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1. Introduction

 

Let X,Y  be separable Banach spaces and ( ,Ƒ,P) be a probability space. By a random mapping 

(or a random operator) from X to Y we mean a rule that assigns to each element x X  a Y-valued 

random variable (r.v.). Mathematically, a random mapping defined from X to Y is simply a mapping 

 0: ,A X L Y  where  0 ,L Y stands for the space of all Y-valued random variables (r.v.’s). If 

S  = [a,b] is a interval of the real line then   
 ,t a b

F F t


  is said to be a Y-valued stochastic 

process. 

The interest in random mappings has been arouse not only for its own right as a random 

generalization of deterministic mappings as well as a natural generalization of stochastic processes but 

also for their widespread applications in other areas. Research in theory of random mappings has been 

carried out in many directions including random linear mappings which provide a framework of 

stochastic integral, infinite random matrix (see e.g. [2, 5, 11], [14-19]), random fixed points of random 

operators, semi groups of random operators and random operator equations (e.g. [3], [6], [10]-[16] and 

references therein). 
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Under the original definition, a random mapping F : S    0 ,L Y is a rule that transforms each 

deterministic input x S  into a random output Fx. Taking into account that inputs may be also 

random, a generalized random mapping is defined as a mapping  0: ,S L Y   , where S is a 

subset of  0 ,L X . 

A random mapping X   0 ,L Y which is linear and bounded is called a random linear 

bounded operator (see [11, 14, 15, 17]) and a generalized random mapping 

   0 0, ,L X L Y   which is strongly linear and bounded is called a bounded generalized random 

linear operator. In Section 2 the one-one corresponding between random linear bounded operators and 

bounded generalized random linear operators is discussed. It is shown that every random linear 

bounded operator from X  to Y  admits a unique extension which is a bounded generalized random 

linear operator from    0 0, ,L X L Y   . Reversely, if     0 0: , ,L X L Y     is a bounded 

generalized random linear operator then the mapping $ restricted on X will be a random linear 

bounded operator. 

By [17], the random mapping A : X   0 ,L Y is a random linear bounded operator if and only 

if there exists almost surely uniquely a mapping T from   to set of all linear bounded operators from 

X to Y such that for each x   X we have    Ax T x   a.s. Thus a random linear bounded 

operator from XY  can be regarded as a family T indexed by    satisfying for each x   X the 

mapping  T x   is measurable. 

Section 3 is concerned with a different form of random linear bounded operators and bounded 

generalized random linear operators. Theorem 3.1, 3.2 show that a random linear bounded operator (or 

a bounded generalized random linear operator) from X to Y can be regarded as a measurable set-

valued mapping from Q to set of all linear bounded operators from X to Y .  

As an application, the properties of some special bounded generalized random linear operators and 

random resolvent set of generalized random linear operators are investigated (Theorem 3.3, 3.4, 3.6). 

2. Random bounded operators and bounded generalized random linear operators 

In this section, some definitions and typical results on random bounded operator, bounded 

generalized random linear operator are listed and discussed. For more details, we refer the reader to 

[14, 17, 18, 19]. 

Throughout this paper, ( , Ƒ,P) is a complete probability space, X, Y are separable Banach 

spaces. A measurable mapping   from ( , Ƒ) into (X,ß(X)) is called a X-valued random variable. 

The set of all X-valued random variables is denoted by  0 ,L X . We do not distinguish two X-

random variables which are equal almost surely. 

 0 ,L X is a metric space under the metric of convergence in probability. If a sequence (un) in 

 0 ,L X converges to u in probability then we write p — lim n   
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Definition 2.1. ([14, 17]) 

- By a random mapping A from X to Y we mean a mapping from X into  0

YL   

- By a random linear mapping A from X to Y we mean a mapping from X into  0

YL   satisfying 

for every 1 2 1 2, , ,x x X     we have 

     1 1 2 2 1 1 2 2A x x A x A x     
 a.s. 

- A random linear mapping  0: YA X L   is said to be a random opeartor if it is continuous 

and is said to be bounded (or random bounded operator) if there exists a real-valued random variable 

 k   such that for each x   X 

   Ax k x      a.s.                                                                                               (1) 

Noting that the exceptional set in (1) may depend on x.A random bounded operator is a random 

operator but in general, a random operator needs not be bounded. For examples of random operators, 

random bounded operators and unbounded random bounded operators, we refer to [14, 17, 19]. It is 

easy to prove the following Theorem which is a little bit more general than a result in [17]. 

Theorem 2.2. A random mapping A :  0

YX L   is a random bounded operator if and only if 

there is an almost surely uniquely mapping T :  0

YX L   such that for each x E X , 

       
        Ax T x   a.s.                                                                                                              (2) 

For the sake of convenience, we denote the a.s. uniquely determined mapping T(w) in the Theorem 

above by [A](w). So, for each x   X, we have 

      x xAA    a.s. 

Definition 2.3. 1. Let  be a subset of  0 ,L X . By a generalized random mapping   

defined on  with values in Y we mean a mapping   :  0 ,L X  . As usual the domain 

 of   is denoted by Ɗ . 

2. A subset  0 ,L X   is said to be a random linear subspace if for every 

 1 2 1 2 0, , ,u u M L     we have 1 1 2 2u u   .  

3. Let  0 ,L X   be a random linear subspace. By a generalized random linear operator 

(g.r.l.o) defined on  with values in Y we mean a strongly linear mapping  0: ,L Y    i.e. 

if  1 2 1 2 0, , ,u u L     then 

       
 1 2 2 2 1 1 2 2u u u u                                                 (3) 

4. A generalized random linear operator    0 0: , ,L X L Y     is said to be bounded if there 

exist a random variable k s.t. u k u   a.s.   0 ,u L X   . 
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It should be noted that the notion of g.r.l.o. has been introduced in [18] where X, Y are Hilbert 

spaces. 

If    0 0: , ,L X L Y     is a bounded generalized random linear operator then the restricted 

operator  0: ,X X L Y    is a random bounded linear operator. Reversely, if 

 0: ,A X L Y  is a random bounded linear operator then by [17], A admits uniquely an extention 

   0 0: , ,L X L Y     which is a bounded generalized random linear operator and moreover for 

each  0 ,u L X   

       
       u A u     a.s. 

Combining this with Theorem 2.2, it is easy to have the following Theorem. 

Theorem 2.4. A generalized random mapping    0 0: , ,L X L Y     is a bounded g.r.l.o. if 

and only if there is an almost surely uniquely mapping T :   L(X,Y ) such that for each 

 0

Xu L   

       
     u T u      a.s.                                       (4) 

For the sake of convenience, we denote the a.s. uniquely determined mapping T( ) as in the 

Theorem above by [ ]( ). So, for each  0

Xu L  , we have 

      
     u u     a.s. 

The set-valued analysis is used as main technique in proofs in the next chapter. Next we list some 

notions and typical results relating to set-valued r.v. to be used later on. 

Let (E, d) be a separable metric space. Denote 2
E

 the collection of all subsets of E, ß(E) the set of 

all Borel measurable sets in (E, d). A mapping F  :   2
E
 is called a set-valued function. A r.v. f : 

E is said to be a measurable selections of F if     ,f F      

Definition 2.5. ([7], Definition 1.1) Let F : Ω → 2E \ ∅ be a set-valued function. 

(a) F is said to be strongly measurable if for every C ⊆ E closed, we have F −1(C ) = {ω ∈ S : F 

(ω) ∩ C = ∅} ∈ Ƒ 

(b) F is said to be measurable or set-valed random variable if for every  C ⊆ E open, we have F 

−1(C ) = {ω ∈ T : F (ω) ∩ C = ∅} ∈ Ƒ 

(c) If F is measurable then it is called a set-valued random variable. 

(d) F is said to be graph measurable if Gr(F ) = {[ω, x]  ∈ T × E  : 

x ∈ F (ω)} ∈ Ƒ×ß(E).   

Theorem 2.6. [7] (Theorem 1.35, Proposition 2.3) Let F : Ω → 2X \ ∅  s.t. F(w) is closed set for 

every ω ∈ Ω. Then the following statements are all equivalent. 
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1. For every C ∈ ß (E),  F 
−1

(C ) ∈ Ω; 

2. F is strongly measurable; 

3. F is measurable; 

4. For every x ∈ E, the mapping ω → d(x, F (ω)) is measurable; 

5. F  is graph measurable. 

6.  There exists a sequence  
1n n

f


 of measurable selections of F, s.t. for every 

    
1

, n n
w F w f w


  . Such a sequence (fn) is called dense measurable selections of F. 

Given a set-valued function F : Ω → 2
E
 \{∅}, we denote SF   = {f ∈ 

L0(Ω, E) : f (ω) ∈ F (ω) a.s.}.  

Theorem 2.7. ([7], implied from Theorem 3.9) Let F, G : Ω → 2E \ ∅ are closed set-valued r.v.’s. 

If SF = SG then F( ) = G( ) a.s. 

3. Main results 

Let    0 0: X YL L     be a bounded g.r.l.o. It is known that in general the mapping 

[Φ] : Ω → L(X, Y ) 

ω → [Φ](ω) 

is not Borel-measurable. However, the following Theorem shows that this mapping is measurable 

in term of set-valued measurable. 

       Let A : D(A) ⊆ X → Y be an arbitrary mapping. Denote Gr(A)  ={[x, y] ∈ X × Y  : x ∈ 

Ɗ(A)} ⊆ 2X ×Y. Note that X x Y is a separable Banach space under the norm 

 

 , , ,
X YX Y

x y x y x X y Y

    

 

Theorem 3.1.  Let Φ :  0

XL   →  set of all mapping from Φ to Y (needs not be measurable). 

Then Φ is a bounded g.r.l.o. if and only if there is an almost surely uniquely mapping T : Ω →  L(X, 

Y)  such that for each  0

Xu L  , 

  Φu(ω) = T (ω)u(ω)    a.s.                                                                                                             (5) 

and the mapping 

  : 2X YGr T 
 

  Gr T                            

is a closed set-valued r.v. 

Because of the corresponding between random bounded operator and bounded g.r.l.o., the 

Theorem above is equivalent to the Theorem below. 

Theorem 3.2. A : X  →  set of all mapping from Ω to Y (needs not be measurable). Then A is a 

random bounded operator if and only if there is an almost surely uniquely mapping T : Ω →  L(X, Y ) 

such that for each x ∈ X, 
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Ax(ω) = T (ω)x    a.s.                                                                                                                       (6) 

and the mapping 

  : 2X YGr T 
 

  Gr T                            

is a closed set-valued r.v. 

Proof.  Sufficiency condition: Let A be a random bounded operator and (xn) be a condense 

sequence of X. Put T = [A]. We construct a sequence of mapping ( n) from Ω to X Y as follows: 

    ,n n nw x T x 
 

nAx is measurable so n  is also measurable. Now we will check that for each   the 

sequence ( n(u))n  is a dense set in Gr(T( )). Indeed, let   be an arbitrary element of 

Gr(T( )), then there exists x  ∈  X such that   = (x,T( )x). Since (xn ) is dense in X then there 

exists a subsequence 'nx  converging to x.  The boundedness of T(u) implies that the sequence 

  'nT x  converges to  T x  and thus   ' ' ',n n nx T x   converges to   ,x T x  . So 

( n) are dense measurable selections of Gr(T). By Theorem 2.6, the closed set-valued mapping 

Gr(T) is measurable. 

Necessity condition: assume T  : Ω →  L(X, Y )  is mapping such that (6) holds and the closed set-

valued mapping Gr(T) is measurable. By Theorem 2.2, it remains to prove Ax  is measurable. By 

Theorem 2.6, there exists a measurable sequence ( n) such that for every   ∈  Ω,  n (ω)  = (un 

(ω), T (ω)un (ω)) and ( n (ω)) is dense in Gr(T( )). The measurability of  n leads to the 

measurability of un and Aun = T (·)un (·).  Let x ∈ X and fix ω ∈ Ω. There exist a subsequence 

  'n   of   n   that converges to     ,x T x   . If       ' ' ',n n nu T u     

then   'nu   converges to x. This implies the sequence  nu   is dense in X for every u  . 

Now let x ∈ X  and fix 0e  , we will construct a random variables v  such that ||v(u) — x|| ≤ e for 

every w and T(·)v (·) is also measurable. Indeed, for each n , we define a set  by induction: 

  :n nB u x e    and 
1

1\ n

n n k kC B B

 . It is not difficult to verify that nC  are disjoint 

measurable sets and nC  . Let    
1
1

nCn
v un 




 , it is easy to see that ||v(u) — x|| ≤ e for 

every   and T(·)vn(·) is measurable. From this we can construct a sequence of measurable 

random variables vn such that ||vn( ) — x|| ≤ 1/n for every   and  T(·)vn (·)  is measurable. 

Combining with the boundedness of T( ) we can conclude that T (·)x is measurable. The theorem is 

proved completely. 

Theorem 3.3. Let    0 0: X YL L     be a bounded g.r.l.o. If   is an injective mapping then 

for almost surely   , the mapping     ,L X Y   is injective. 

Proof.  For each  , let      : 0N x X x X      . Put 

  0 ,0 :X x x X X Y    . Observe that, for each     , 0N Gr X        . It is 
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obvious that the closed set-valued mapping 0X  is a graph measurable. Thus the closed set-

valued mapping  N   is graph measurable. By Theorem 2.6, there exists a sequence 

 0

X

nu L  such that for every     
1

, n n
N u  


   Since        0n nu u       

a.s. and   is injective, un = 0 a.s. So there exists a measurable set 1  s.t.  1 1P    and   0nu    

for every 1 Hence    0N    for every 1 . In other words, for almost surely  , the 

mapping    : X Y   is injective. □ 

Denote  ,c X Y  the set of all closed linear operators  :T D T X Y   

Theorem 3.4. Let      1

0 0: X YL L       be a g.r.l.o. If  is injective, surjective and 

   1

0 0: Y XL L     is a bounded g.r.l.o. then there exists an almost surely uniquely mapping 

 : ,cT X Y  such that 

1. For almost surely u E  Q, the mapping     :T T X Y     is injective, surjective and 

   
1

,T L Y X

 . 

2. The mapping 

  : 2X YGr T   

  Gr T 
                          

is a closed set-valued r.v. 

3. 

         0 , : . . ,u L X u T a s       (7) 

        . . ,u T u a s u        (8) 

         0 :X YGr v L v Gr T       (9) 

Proof.  1. The mapping      1

0 0: Y XL L       is a bounded g.r.l.o. Since 
1  is 

injective, by Theorem 3.3, the mapping    1 ,L Y X     is injective for almos  . For 

each  , put     
1

1T  


   
 
then    ,cT X Y  since    1 ,L Y X    . It is 

obviuos that     :T T X Y    is injective, surjective and and 

      
11 1 ,T L Y X 
       

2. By Theorem 3.1, the closed set-valued mapping 

 1 : 2Y XGr     
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  1Gr     

 is measurable. Thus it is easy to see that the closed set-valued mapping 

 1 : 2Y XGr     

     1
transposed

Gr T Gr       

is also measurable. 

3. It is easy to verify (11), (12) and (13). 

The a.s. uniqueness of T is implied from (13) and Theorem 2.7. □ 

Definition 3.5.  

      1. Let      0 0: X XL L       be a g.r.l.o. 

 0L   is said to be a random regular value of $ if the mapping ID   is injective, 

surjective and the mapping      
1

0 0: X XID L L


     is a bounded g.r.l.o. Where ID  is 

the identity mapping on  0

XL   

2. The set of all random regular values of   is called random resolvent set of   and is denoted by 

    

Theorem 3.6. Let      0 0: X XL L       be a g.r.l.o. If the random resolvent set of   

is not empty then there is an almost surely uniquely mapping  : ,cU X X  such that 

1. The mapping 

  : 2X YGr U 
 

  Gr T                                                                                                                            (10) 

Is a closed set-valued r.v 

2.  

         0 , : . . ,u L X u T U a s                                                                           (11) 

         . . ,u T u a s u                                                                                       (12) 

 
         0 :X YGr v L v Gr T     

                                                                          (13) 

        and we have 

                0 : ,L T                                                                              (14) 
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Proof.  Assume     . Put ID   . Then   is injective, surjective and 

   1

0 0

X XL L      is a bounded g.r.l.o. By Theorem 3.4, there exists an almost surely 

uniquely mapping  : ,cU X Y  such that 

1. For almost surely w , the mapping     :U U X Y    is injective, surjective and 

   
1

,U L X X

 . 

2. The mapping 

  : 2X YGr U   

  Gr U   

is a closed set-valued r.v. 

3. 

         0 , : . . ,u L X u U a s     
 

        . . ,u U u a s u      
 

         0 :X YGr v L v Gr U     
 

Now for each w G Q, put T( ) = A(u)id -  U( ), where id  is the identity mapping on X . It is 

not difficult to verify (10), (11), (12), (13), (14). 
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