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Abstract: In this paper, the author investigated the phenomenon of flutter, which may be the cause 

of instability of construction structure when it is affected by aerodynamics. By analyzing the effect 

of aerodynamic on the structure via mathematical analysis, the author has established a 

mathematical model to study the stability of the structure in the aerodynamic flux that moves 

supersonically.  
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1. Introduction

 

     Aerodynamic load is a significant element when calculating physical structure of large 

constructions, such as skyscrapers, antenna towers, suspension bridges, etc. This is especially 

important for flying equipments. Aerodynamic that affects on the structures in both the same direction 

as well as the perpendicular one of gas flow, depends on magnitudes, characteristics of the gas flow 

and the movements of the structures. Aerodynamic stability of technical systems is the most important 

consideration when calculating structures under aerodynamic load. The study of static and dynamic 

nonlinear patterns of flutter and the aerodynamic stability has a significant impact in practical problems. 

     Although there are many works dealt with the stability of sheet structures which have composite 

materials, however, almost the previous publications, the authors have mainly applied finite element 

methods [1-8]. The main content of this paper is a dynamic analysis of sheet structure that has 

functionally graded materials under aerodynamic load. One of the unstable situations is flutter, which 

might cause the instability of structure under aerodynamic load. In the sheet structure the energy from 

gas flow was generated depending on the movement and speed of such movement. By using nonlinear 

Piston theory and mathematical analysis, we proposed a qualitative model of nonlinear flutter of 

structures, and evaluated the stability of the model by numerical analysis. 
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2. Content 

2.1. The model of nonlinear flutter of sheet structure under aerodynamic load  

     Let us investigate a sheet structure from ceramic and metal with the depth h , the length a and the 

width b.  The outside of the sheet structure is effected by the supersonic gas flow in the parallel 

direction with the middle surface of the structure. In the coordinate axis 0 xyz, axes 0x, 0y  and 

0z describe different directions of the middle surface of the sheet structure.
 
 

 

 

   

  

    

 

 

 

     The ratio between the volume of ceramic cV ( z )  and the one of metal mV ( z )  is distributed 

according to the mixed law  
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                                       (1) 

in which, k 0  is the volume-fraction index, z  is the thickness coordinate of the sheet structure, 

h h
z ,

2 2

 
  
 

. According to the mixed law, module Young  E z  and mass density  z  of the 

material are expressed under the form 
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where cE , mE  and  c z ,  m z  are respectively the module Young and mass densities of the 

ceramic and of the metal.  

     The movement of a material point  M x,y,z  in the sheet structure has moving components 

u, v and w  in the directions of 0x, 0y  and 0z. The transpose in a neighborhood of the point consists 

of transposed parts that cause the strains and circular motion. The distorted elements are constrained 

by the conditions that are suitable for the change, in order to ensure the existence of continuous and 

monotonic solutions. 

     According to the classical theory of sheet structure with nonlinear geometrical characteristics, so-

called Von Korman-Donnell, deformations    x y xyM , ,     at the point  M x,y,z  having the 
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distance z  from the middle surface of the sheet structure are presented by transposed elements 

u, v, w  by deformation  0 0 0 0

x y xy, ,     and by vector curvature of bending sheet  x y xy, ,     

via the relation   0M z    . Consequently, we have 

        0 0 0

x x x y y y xy xy xyz , z ,  2z ,                                                   (3) 

where 
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                              (4) 

     Then, the deformation compatibility equation is 
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.
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                                      (5) 

Hooke’s law describes the relationship between stress and deformation of the structure as follows, 

with the Poisson's ratio v  is assumed to be constant  
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                         (6)                          

Components of internal force and moment are calculated through stress components  
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in which, 
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     From (7) it follows that 
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Combining with (8) we obtain 
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To establish mathematical equations of a sheet structure under aerodynamic load, we consider the 

case that a sheet lies in the same direction with the movement direction of the supersonic gas flow U .       

The flow affects on the surface of the sheet structure via the pressure 0q  in the perpendicular 

direction with the middle layer of the sheet. According to Love’s theory, the equations of motion are 

given by
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where  
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According to the nonlinear Piston theory, aerodynamic force affecting on the structure is defined 

by the formula 

                                       0

w 1 w
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in which   is the heat capacity of gas, a
 is the speed of sound, P  is the gas pressure without 

perturbation. With  U  is the speed of gas flow,  
U

M :
a

  is the Mach number, which characterizes  

the compression strength of the moving gas flow. 

Using Volmir’s hypothesis, we have 
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stress function   such that 
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the equations of (12) becomes homogeneous equations. 

     The equation (13) is transformed into 
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From (5), (10) and (15) we transform the deformation compatibility equation into  

                                          

2
2 2 2

2 2

1

1 w w w
.

E x y x y


   
  

    
                                     (17) 

From (11), (14), (15) and (16) we have the movement equation 
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     The system of equations (17) and (18) has unknown functions   and w  describing the flutter of 

the structure under aerodynamic force. This system is used to study the nonlinear flutter and dynamic 

stability of structure.  

2.2. The analysis of nonlinear dynamic models   

     Consider the single mixed sheet in each edge, that satisfies the boundary conditions 
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With the amplitudes of fluctuation    1 2f t , f t  of sheet structure, we will find the solutions of the 

equations (17) and (18) in the form 
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1 2

m x n y ( m 1) x n y
w f ( t )sin sin f ( t )sin sin ,
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                    (20) 

     Such that, they satisfy the boundary condition (19) and the initial condition: 
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Solving the equation (17) with the formula of the equation’s solution determined by (20), we find a 

stress function   
in the form 
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(23) 

Using the Galerkin’s method for the equation (18), we obtain the system  
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   (24)        

Then, we have a relation that determines the partial flutter frequency   of the sheet structure as below 
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     The system of nonlinear differential equations (24) và (25) describes flutter and the flutter 

frequency of the structure under aerodynamic force. To evaluate the fitting of the model, we used RK4 

method in Matlab to solve and analyze the stability of the system. 
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2.3. Fitting of the model 

To evaluate the reliability of the method, we study the influence of composite elements of a 

material on the stability of flutter frequency by using numerical analysis.  

The system of nonlinear differential equations (24) satisfies the initial condition 

       10 10

1 1 2 2f 0 10 , f 0 0, f 0 10 , f 0 0.      

     Considering the case where geometrical parameters of the structure are assigned values: 
cE   

380.10
9
 N/m

2
, 

c   3800 kg/m
3
, 

mE 70. 10
9
 N/m

2
, 

m   2720 kg/m
3
;    0,3 and the characterized 

factors of aerodynamic force:    1,4,  P   99473,4 N/m
2
,  a   340m/s. 

     The amplitude of oscillation    1 2f t , f t  of sheet structure, that are described as in the Figures 1, 

2, 3, 4 below shows that the mathematical model is suitable to describe the influence of the component 

elements. 

 

Figure 1. Stable flutter 

 

Figure 2. Instable flutter when                                    

sheet depth reduces 0,001m. 

     With the data described in Figure 1 and Figure 2, we observed that with a small change of the depth 

of the sheet structure, the flutter will change from a stable state to an unstable one. 

 

Figure 3. Stable flutter 

 

Figure 4. Instable flutter when increasing                   

the ratio a/b to 0.01116. 

 

     From the data described in Figure 3 and Figure 4, we see that when there is only a small change of 

ratio of the sizes of the sheet structure, the flutter will change from a stable state to an unstable state. 
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3. Conclusion 

     The mentioned above mathematical model can be used to study the qualitative problems of 

technical systems of sheet structure of constructions under aerodynamic force. The application of 

dynamic criteria in investigating the stability of mechanical systems leads to the investigation of the 

stability of solution of differential equations that describes the motion. 
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