
VNU Journal of Science: Mathematics – Physics, Vol. 33, No. 2 (2017) 59-65 

 59 

The Mobilities of Carriers Confined in a Single-side Doped 

Square Quantum Wells Dependence on Temperature 

Tran Thi Hai*   

Faculty of Nature Science, Hong Duc University, Thanh Hoa, Vietnam 

Received 17 April 2017 

Revised 26 May 2017; Accepted 15 June 2017 

 

Abstract: A theory is given of the mobility of a two-dimensional electron gas at high temperature 

in single-side square quantum wells. Within the variational approach, we obtain analytic 

expressions for the carrier distribution, and autocorrelation functions for various scattering 

mechanisms. We examine the dependence of the mobilities of carriers on the temperature. Our 

theory is able to well reproduce the recent experimental data on transport in 1S-doped square 

QWs, e.g., acoustic-phonon partial mobility dependence on temperature for single-side modulation 

doped square quantum wells. 
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1. Introduction

 

Modulation doped quantum wells (QWs) have received enormous attention in recent years due to 

their importance in device applications. In order to upgrade the electron mobility of modulation doped 

quantum wells, one needs to identify the key scattering mechanisms limiting the transport properties 

of their two-dimensional electron gas (2DEG). It is well known [1, 2] that the best way for this 

purpose is to study the dependence of 2DEG mobility on experimental conditions such as sample 

temperature, carrier density, and channel width.  

Recently, [3, 4] we have presented a first successful attempt at giving a theory of the mobilities of 

carriers confined in a single-side doped square quantum. We are able to explain the mobility of the 

single-side doped square quantum well dependence on carrier density and channel width. However, 

these investigation do not take into account mobility dependence on temperature. Thus, the goal of this 

paper is to provide a theory of the band bending effect on the high-temperature transport properties of 

charge carriers in a single-side modulation doped infinite square QW. We develop a variational 

approach to the description of quantum confinement in bent-band infinite square QWs. For strained 

GaAs channel in GaAs/ AlGaAs single asymmetric quantum well, we incorporate all possible 

scattering mechanisms, especially optical phonons (dominant at high temperatures). 
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The paper is organised as follows. In the second section, we supply the basic equations for 

calculating the carrier distribution in the growth direction for single-side doped square QWs. In 

section 3, Numerical results and comparison with the recent experimental data. Lastly, a summary is 

given in section 4. 

2. Basic relations 

2.1. Variational wave function for a single-side modulation doped infinite square QW 

The well layer forms a conduction channel of width L in the region |z|<L/2. The sample is 

modulation doped in a region of thickness Ld in the surface-side barrier z<-L/2 and separated from the 

channel by a spacer layer of thickness Ls. The confinement may be plausibly described by an 

asymmetric wave function as follows [3]: 

1/ 2 zBk (cos kz )e for | z | L / 2
( z )

0 for | z | L / 2,




 

 


                                                                                    (1) 

in which B, k and   are variational parameters to be determined; k and    are wave numbers in 

the well layer with   quantifying the doping – induced band bending effect. The boundary conditions 

at the interface planes and the normalization read as follows: 

k / L ,
2

1B ( c ) / 2 1   ,                                                                                                          (2) 

where c L , and 
1( c )  is in Eq.(18), so c is the single independent variational parameter. In the 

absence of doping c = 0 this goes to the exact symmetric wave function of an ideally-square well (flat-

band model). [5] Thus, the parameter c quantifies the effect of the doping-induced band bending on 

the wave function. 

2.2. Hartree potential in a single-side modulation doped infinite square QW 

The wave function of the lowest subband is to minimize the total energy per particle, which is 

determined by the Hamiltonian 

HH T V ( z )  ,                                                                                                                               (3) 

where T is the kinetic energy, and HV ( z )
is the Hartree potential as a confining potential along the 

growth direction. The latter is created by the ionized remote impurities and charge carriers in the well 

in accordance with Poisson's equation:  

 
2 2

H I2

L

d 4 e
V ( z ) N ( z ) p( z )

dz




  ,                                                                                                 (4) 

in which NI(z) is the bulk density of impurities (per unit volume), p(z) the one of carriers, and L  

is the dielectric constant of the QW. The sample is modulation doped with an impurity density NI in a 

region in the top barrier from -zd to -zs, where the doping positions:  zd =Ld + Ls + L/2 and zs = Ls + 

L/2, so that 

2I d s

I s

N , for  - z z -z
N (z)= and p( z ) p ( z ) ,

0, elsewhere,


 
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
                                                            (5) 
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with ps as a sheet carrier density. We solve Poisson's equation (4) in combination with electrostatic 

boundary conditions, especially the vanishing of the relevant electric field at infinity z  . As a 

result, within the variational approximation with the use of the wave function from Eq.(1), the Hartree 

potential may be separated into two parts: 

H I sV (z)=V (z)+V (z) .                                                                                                                         (6) 

The first term VI  from Eq.(6) is to be regarded as the impurity potential fixed by the doping 

profile, viz the impurity density NI and doping positions zd , zs; while the second one Vs as the carrier 

potential fixed by their sheet density ps and their distribution. 

 2.3. Total energy per particle in the lowest subband 

We now turn to the total energy per particle in the ground-state subband. The expectation value for 

the Hamiltonian from Eqs.(3) and (6) is a function of the bending parameter c, given by 

I sE( c ) T + V + V       .                                                                                                                  (7) 

The total energy per particle is given by Eq.(7), in which the average potential due to the carrier 

distribution  is to be replaced with its half.  For the kinetic energy, it holds 

 
2 2

2 2

1 12

z

B
T = c - (c)+2 c (c)

2m L 2


   


 
  ,                                                                               (8) 

where mz is the out-of-plane carrier effective mass of the well material, γn  and ωn with n as an 

integer are simple functions of a variable defined by Eqs.(19).   Next, the average potential due to 

charged impurities can be written in terms of the dimensionless doping positions: dd  z / L  and 

ss z / L,  by 

 
22

2 2I
I

L

N L4pe
V = d - s

e 2 .                                                                                                             (9) 

Lastly, for the carrier potential it holds 

   
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                                   (10) 

3. Low-temperature quantum transport 

We are now dealing with quantum transport of electrons in the above system. The particles 

moving in the in-plane are scattered by various disorder sources, which are characterized by some 

random fields. Acoustic-phonon scattering has the momentum relaxation time given by [6] 
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 
k

1
W( k,k ) 1 cos ,

( E )


 

                                                                                                      (11) 

  where x y
ˆ ˆk k i k j   and W( k,k )  is the transition probability from the state k  to k   and    is the 

scattering angle. 

As known, [6, 7] scattering by a Gaussian random field is the transition probability W(k, k'): 

2
2B

z k k2 2

q

2k T | M( q )|
W( k,k ) dz | I( q )| ( E E ),

S (| k k |)









  
                                                       (12) 

where qz is the wave vector normal to the heterointerface and  M q
 is the 3D scattering matrix 

element.  

I(qz) is the overlap integral by [6] 

   z zI( q ) dz ( z )exp( iq z ) ( z ). 





                                                                                  (13) 

At high temperatures the carriers in the single-side doped square QWs are expected to experience 

the following scattering sources: acoustic phonons (Deformation potential-DP(i) and Piezoelectric 

coupling-PZ(ii)).  

Total inverse transport lifetime: 

DP PZtot( AC )

1 1 1
.

  
 

                                                                                                                  (14) 

Within the linear transport theory the mobility is determined by 
*

te ,/ m   with 
* m

 as the in-

plane carrier effective mass of the well layer.  

 (i). Deformation potential-DP:  

For the acoustic phonons generated by the deformation potential the electron-phonon scattering 

matrix element is given by: [7] 

2

q2

3

l

D
| M( q )| ,

2c L


                                                                                                                (15) 

where D is the deformation potential constant. 

 

(ii). Piezoelectric coupling-PZ 

 

Scattering matrix element due to the piezoelectric coupling given by [7]  

 

2 2

q2

2 3

0

2 e P
| M( q )| ,

q L

 


                                                                                                       (16) 

where P is the piezoelectric constant, 0  is the static dielectric constant, 
e

 the elemental charge. 

The static screening factor at finite temperature has been calculated to be [8, 9] 
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2

0

2 e F( q ) ( q )
S( q ) 1 .

q

 
                                                                                                          (17) 

The screening form factor  sF q  takes account of the extension of the particle state along the growth 

direction, defined by [8] 

2 2 q|z z |

SF ( q ) dz dz ( z ) ( z )e . 
 

 

 
                                                                              (18) 

      The calculation of  sF q with plausible wave  function given in  Eq. (1) is lengthy, but straight 

forward with the aid of the functions 
n  and 

n  in Eqs: 

n

n 2 2 2

n

n 2 2 2

1 ( 1) x
( x ) sinh x,

x x n

( 1) n
( x ) sinh x.

x n
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




                                                                                                     (19) 

As a result, one may achieve an analytic expression: 

 2 4 (u) (l)

SF ( t )= B / 4 [S ( t )+S (t )],                                                                                            (20) 

  with t qL  as the dimensionless in-plane wave number. The functions figuring here are defined 

as follows:   
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         (21) 

 

  where the upper and lower signs refer to the superindices ( u ) and ( l ), respectively.    

The static polarizability at finite temperature is given by [7] 

F

B 20 F

B

1 ( q,0, )
( q,T ,E ) d ,

4k T E
cosh

2k T

 
 






 
 
 

                                                                                 (22) 

      where ( q,0, )   is the polarizability function at T   0 K , namely, 

1/ 2
2

F
F2

2km*
( q,0, ) 1 ( q 2k ) 1 ,

q
  



    
           

                                                            (23) 

       here F Fk 2m* E /  is the Fermi wave number. In the quantum limit, the temperature can be 

considered low enough so that Fq  2k  becomes a very good approximation to acoustic phonon and 

it is very useful in phonon mobility calculations since it makes the factor in brackets of Eq. (23) to be 
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unity. Also, due to the fact that significant effects of interface-phonons were never experimentally 

found, the electron-phonons non interactions occurring in the 2DEG are considered identical to that of 

bulk GaAs.  

4. Numerical results 

 In this section, we apply the above-developed theory in order to understand the properties of low-

temperature transport in remote doped square QWs. The calculations of electron mobility were 

developed for x 1 xGaAs / Al Ga As  square QWs whose following physical parameters were taken 

elsewhere [7, 10]: 

      There common parameters are: 12 2

s s d LL 152Å, p 10 cm ,L 200Å,L 100Å, 13.4,x 0,33,       
11 2

B l ea 103.47Å,C 1.397 10 N / m m 0.067m ,P 0.064       

      These mobility dependences on temperature for square quantum well are shown in Figure 1. 

Acoustic-phonon partial mobility in a x 1 xGaAs / Al Ga As square QW  with  a chanel width vs 

temperature T. The experimental data [10] are marked by squares. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Acoustic-phonon (DP plus PZ coupling) partial mobility dependence on temperature for single-

side doped square quantum well. 

As clearly observed from Figure 1 (a,b), the partial mobility for Deformation potential-DP and 

Piezoelectric coupling-PZ (a) and the total mobility (b) decreased in the temperature values 
1 100K.

  

5. Conclusion 

(i) Within the variational approach, we obtain analytic expressions for the carrier distribution and 

their scattering in single-side modulation-doped square quantum wells. 

(ii) We calculated the dependences on temperature of acoustic-phonon scattering and the total 

mobility. We show that phonon scattering plays an important role in limiting the electron mobility in 

square QWs. We analyzed the behavior of the mobility for temperature values up to 100K. 
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(iii) Our theory is able to well reproduce the recent experimental data about transport of electrons 

and holes in one-side doped square QWs. 
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