VNU Journal of Science: Mathematics - Physics, Vol. 33, No. 3 (2017) 68-76

Cyclic Inequality Forms with Power 1/2,1/3

Pham Van Quoc*

High School for Gifted Student, VNU University of Science

Received 14 June 2017 Accepted 19 September 2017

Abstract: The purpose of this paper is to establish inequalities between two terms

$$F = \sum_{i=1}^{n} \sqrt{ax_i^2 + bx_i x_{i+1} + cx_{i+1}^2 + dx_i + ex_{i+1} + d};$$

$$G = \sum_{i=1}^{n} \sqrt[3]{ax_i^3 + bx_i^2 x_{i+1} + cx_i x_{i+1}^2 + dx_{i+1}^3},$$

and $\sum_{i=1}^{n} x_i$ for a sequence of cyclic positive real numbers $(x_i)_{i=1}^{n+1}$ with $x_{n+1} = x_1$. *Keywords*: Cyclic inequality, power 1/2,1/3.

1. Introduction

Let $x_1, x_2, ..., x_n$ be sequence of positive number satisfying $x_1 = x_n$. The cyclic inequalities of n variables have a form

$$S(x_1, x_2, ..., x_n) \ge 0,$$

where S is a function of n variables, valued in **R**. In [2] author considers the function

$$f(x, y, z) = \frac{x}{y+z} \tag{1.1}$$

to establish a cyclic inequality

$$S(x_1, x_2, \dots, x_n) = \frac{x_1}{x_2 + x_3} + \frac{x_2}{x_3 + x_4} + \dots + \frac{x_{n-1}}{x_n + x_1} + \frac{x_n}{x_1 + x_2} - \frac{n}{2},$$

and conjectures that $S(x_1, x_2, ..., x_n) \ge 0$. On the other hand, the well-known inequality

$$\sqrt{a^2 + x^2} + \sqrt{b^2 + y^2} + \sqrt{c^2 + z^2} \ge \sqrt{(a + b + c)^2 + (x + y + z)^2}$$
(1.2)

Email: quocpv@gmail.com

^{*} Tel.: 84- 888558881.

https//doi.org/ 10.25073/2588-1124/vnumap.4209

is showed in [7, chapter V] with its corollary $\sqrt{a^2 + b^2} + \sqrt{b^2 + c^2} + \sqrt{c^2 + a^2} \ge \sqrt{2}(a+b+c)$. Some inequalities are "similar" but they are in opposite side

$$\sqrt{a^2 + 5ab + 4b^2} + \sqrt{b^2 + 5bc + 4c^2} + \sqrt{c^2 + 5ca + 4a^2} \le 3(a + b + c)$$
(1.3)

$$\sqrt{a^2 + bc} + \sqrt{b^2 + ca} + \sqrt{c^2 + ab} \le \frac{3}{2}(a + b + c)$$
 (1.4)

in [5, chapter 5].

In this paper, instead of using the function f in (1.1), we use the functions (1.2), (1.3) and (1.4) to establish cyclic inequalities by comparing the functions

$$F(x_1, x_2, ..., x_n) = \sum_{i=1}^n \sqrt{ax_i^2 + bx_i x_{i+1} + cx_{i+1}^2} \text{ or}$$
$$G(x_1, x_2, ..., x_n) = \sum_{i=1}^n \sqrt[3]{ax_i^3 + bx_i^2 x_{i+1} + cx_i x_{i+1}^2 + dx_{i+1}^3}$$

with a function of $\sum_{i=1}^{n} x_i$, where $x_{n+1} = x_1$.

The main way to approach the problem is firstly to establish an inequality between $\sqrt{ax^2 + bxy + cy^2}$ and $\alpha x + \beta y$ and then to give a condition on $\Delta = b^2 - 4ac$ for which we obtain the result

$$F = \sqrt{a+b+c} \ge \sum_{i=1}^{n} x_i \text{ or } F = \sqrt{a+b+c} \le \sum_{i=1}^{n} x_i$$

depending on the sign of Δ . We also consider a general problem with the expression $A(x; y) = ax^2 + bxy + cy^2 + dx + ex + f$. By reducing it into a simpler form $A(x; y) = ax^2 + bxy + cy^2 + d$, we get the same inequality in case $\Delta > 0$. For general *n*, it is still an open problem.

For the expression G, by using the similar idea of proving F, we try to drive an expression

$$ax^{3} + bx^{2}y + cxy^{2} + dy^{3} = (\alpha x + \beta y)^{3} + (\gamma x + \delta y)(x - y)^{2},$$

and depending on sign of γ , δ we have the comparison between *G* and $\sum x_i$. This paper is organised as follows. In section 2 we consider cyclic inequality with power $\frac{1}{2}$ by using the function $f(x, y) = ax^2 + bxy + cy^2 + dx + ey + f$. Section 3 deals with cyclic inequality with power $\frac{1}{3}$ with the function $f(x, y) = ax^3 + bx^2y + cxy^2 + dy^3$.

2. Cyclic inequality with power $\frac{1}{2}$

First at all, we establish an inequality for $\sqrt{ax^2 + bxy + cy^2 + d}$. To start with, we will find the condition such that the expression $\sqrt{ax^2 + bxy + cy^2 + d}$ is defined for all $x, y \ge 0$.

Put
$$A(x; y) = ax^2 + bxy + cy^2 + d$$
 and $\Delta = b^2 - 4ac$

Lemma 2.1 $A(x; y) \ge 0$ for all $x, y \ge 0$ if and only if one of two following conditions holds

i) $a,c,b,d \ge 0$; *ii)* $a,c,d \ge 0, b < 0$ and $\Delta \le 0$.

Proof. Since A(0,0)=d, it follows that $d \ge 0$. Writing $A(x, y) = y^2(at^2 + bt + c) + d$ with $t = \frac{x}{y}$ yields $at^2 + bt + c \ge 0$ for all $t \ge 0$. Indeed, if there is t_0 such that $at_0^2 + bt_0 + c < 0$ then we let $y \to \infty$ to get a contradiction. The case a=0 is trivial, so let $a\neq 0$. From the property $at^2 + bt + c \ge 0$ for all $t \ge 0$ it follows $a,c\geq 0$. Hence, if $b\geq 0$ we have i). Otherwise, If b<0, we use the expression $A(x; y) = y^2 a \left(\left(t + \frac{b}{2a} \right)^2 - \frac{\Delta}{4a^2} \right) \text{ then with } t = -\frac{b}{2a} > 0 \text{ we see that } A(x; y) \ge 0 \text{ is equivalent to } \Delta \le 0.$

Thus we have *ii*). The proof is complete. \Box

Remark 2.2 In both conditions we have $a+b+c\geq 0$. If a+b+c=0 then the condition becomes $a = c = -\frac{b}{2} = 0.$

For the sake of simplicity, from now on we assume a>0. Firstly, we consider the case d=0. **Lemma 2.3** Let a,b,c be real numbers such that a+b+c>0. There exist α,β,γ such that $\alpha+\beta>0$ and

$$ax^{2}+bxy+cy^{2}=(\alpha x+\beta y)^{2}+\gamma (x-y)^{2}.$$

Proof. Developing the desired equality and comparing coefficients of both sides we have the equation

$$\begin{cases} \alpha^{2} + \beta = a \\ \beta^{2} + \gamma = c \\ 2\alpha\beta - 2\gamma = b. \end{cases}$$
(2.1)

Summing these equations, we get $(\alpha + \beta)^2 = a + b + c$. Thus, $\alpha + \beta = \sqrt{a + b + c}$. Now, subtracting the first and the second equation in (2.1) we have $\alpha^2 - \beta^2 = a - c$ which follows $\alpha - \beta = \frac{a - c}{\sqrt{a + b + c}}$. Hence

$$\alpha = \frac{2a+b}{2\sqrt{a+b+c}}, \beta = \frac{2c+b}{2\sqrt{a+b+c}}$$

Substituting α,β into the last equation in (2.1) yields

$$\gamma = \frac{4ac - b^2}{4(a+b+c)}.$$

We have the proof. \Box

Theorem 2.4 Let *a,b,c* be real numbers such that *a,c,a+b+c>0*. For any sequence of real positive numbers $x_1, x_2, ..., x_{n+1}$ with $x_{n+1} = x_1$ we have

i) if
$$\Delta \leq 0$$
 then $F(x_1, x_2, ..., x_n) \geq \sqrt{a+b+c} \sum_{i=1}^n x_i$

ii) if
$$\Delta > 0, a, b, c \ge 0$$
 then $F(x_1, x_2, ..., x_n) \le \sqrt{a + b + c} \sum_{i=1}^n x_i$.

The equality occurs if and only if $x_1 = x_2 = ... = \xi_v$.

Proof. Applying Lemma

$$\sqrt{ax_{i}^{2} + bx_{i}x_{i+I} + cx_{i+I}^{2}} = \sqrt{\left(\alpha x_{i} + \beta x_{i+I}\right)^{2} + \gamma \left(x_{i} - x_{i+I}\right)^{2}}$$

for $i = 1, 2, ..., n, x_{n+1} = x_1$.

i) It is clear that $\Delta \le 0$ is equivalent to $\gamma \ge 0$ or $\sqrt{ax^2 + bxy + cy^2} \ge |\alpha x + \beta y|$. Therefore

$$F(x_1, x_2, ..., x_n) \ge \sum_{i=1}^n |\alpha x_i + \beta x_{i+1}| \ge \left| \sum_{i=1}^n (\alpha + \beta) x_i \right|$$
$$\ge \sqrt{a+b+c} \sum_{i=1}^n x_i.$$

We have the first conclusion.

ii) The second is easy since $\alpha,\beta \ge 0,\gamma < 0.$

Now, we study the problem in a more general context. Firstly, we consider the following proposition: **Proposition 2.5.** *The relation*

$$ax^2 + bxy + cy^2 + dx + ey + f \ge 0$$

holds for all real values of x and y if and only if one of the following items i), ii), iii) or iv) is satisfied

Proof. See [6], chapter 11. \Box

Denote

$$A(x; y) = ax^{2} + bxy + cy^{2} + dx + ey + f, a \neq 0, \Delta = b^{2} - 4ac$$

By changing variables x=X+m, y=Y+n then $A(x; y) = aX^2 + bXY + cY^2 + DX + EY + F$ where $D=2am+bn+d, E=2cn+bm+e, F=am^2+bmn+cn^2+dm+en+f$. It depends on $\Delta \neq 0$ or $\Delta=0$ we can choose *m*,*n* such that D=E=0 and A(x; y) transforms into one of the two types:

- *i*) $A_{I}(x; y) = ax^{2} + bxy + cy^{2} + d;$
- *ii*) $A_2(x; y) = ax^2 + by + c$.

It is not difficult to give some conditions on *a,b,c,d,e,f* such that A(x; y) = 0 for all $x, y \ge 0$. However, these conditions are very complicated. So, for simple, from now on, we only consider the cases of $A_1(x; y), A_2(x; y) \ge 0$ for all $x, y \ge 0$.

For the case *i*: $A(x; y) = ax^2 + bxy + cy^2 + d$. We now consider the case d>0. As in Lemma 1, to make sure $A(x; y) \ge 0$ for all $x, y \ge 0$ we need conditions: $a, b, c, d \ge 0$ or $a, c, d \ge 0, b < 0, \Delta = b^2 - 4ac \le 0$. Without loosing of generality we can assume d=1. Then,

$$F(x_1, x_2, ..., x_n) = \sum_{i=1}^n \sqrt{ax_i^2 + bx_i x_{i+1} + cx_{i+1}^2 + 1}, (x_{n+1} = x_1).$$

Theorem 2.6 Let a,b,c be real numbers such that $a,c,d,a+b+c>0, \Delta=b^2-4ac \le 0$. For any real positive number $x_1, x_2, ..., x_n$ we have

$$F(x_1, x_2, ..., x_n) \ge \sqrt{(a+b+c)\left(\sum_{i=1}^n x_i\right)^2 + n^2}.$$

The equality occurs if and only if $x_1 = x_2 = ... = x_n$.

Proof. Since $\Delta \leq 0$, $\gamma \geq 0$. Applying Lemma 2 we have $\sqrt{ax_i^2 + bx_ix_{i+1} + cx_{i+1}^2 + 1} \geq \sqrt{(\alpha x_i + \beta x_{i+1})^2 + 1}$. Therefore,

$$F \geq \sum_{i=1}^{n} \sqrt{(\alpha x_{i} + \beta x_{i+1})^{2} + 1}$$

$$\geq \sqrt{\left(\sum_{i=1}^{n} \alpha x_{i} + \beta x_{i+1}\right)^{2} + (1 + ... + 1)^{2}}$$

$$= \sqrt{(\alpha + \beta)^{2} \left(\sum_{i=1}^{n} x_{i}\right)^{2} + n^{2}}$$

$$= \sqrt{(a + b + c) \left(\sum_{i=1}^{n} x_{i}\right)^{2} + n^{2}}.$$

And we have the conclution. $\ \square$

Now, consider the case $\Delta >0$, to estimate *F*, we need some more conditions on *a,b,c* and it becomes very complicate if $n \ge 4$. For n=2,3 we have results:

Proposition 2.7 *i*) If $a, c > 0, b \ge a + c$ then

$$F_2(x; y) \le \sqrt{(a+b+c)(x+y)^2+4}.$$

ii) If $a,c>0,b\geq 2a+2c$ then

$$F_{3}(x; y; z) \le \sqrt{(a+b+c)(x+y+z)^{2}+9}$$

The equality holds iff x=y in i), or x=y=z in ii).

Proof. *i*) We have

$$F_{2}(x; y) = \sqrt{(\alpha x + \beta y)^{2} + \gamma (x - y)^{2} + 1} + \sqrt{(\alpha y + \beta x)^{2} + \gamma (y - x)^{2} + 1}$$

$$\leq \sqrt{2((\alpha x + \beta y)^{2} + (\alpha y + \beta x)^{2} + 2\gamma (x - y)^{2} + 2)}.$$

Moreover,

$$(\alpha + \beta)^{2} (x + y)^{2} - 2(\alpha x + \beta y)^{2} - 2(\beta x + \alpha y)^{2} - 4\gamma (x - y)^{2}$$

= $(x - y)^{2} (-\alpha^{2} + 2\alpha\beta - \beta^{2} - 4\gamma) = (x - y)^{2} (-\alpha + b - c) \ge 0$

since $b \ge a + c$. Hence,

$$F_2(x; y) \le \sqrt{(\alpha + \beta)^2 (x + y)^2 + 4} = \sqrt{(a + b + c)(x + y)^2 + 4}.$$

ii) Similarly,

$$F_{2}(x; y) \leq \sqrt{3\left(\left(\alpha x + \beta y\right)^{2} + \left(\alpha y + \beta z\right)^{2} + \left(\alpha z + \beta x\right)^{2} + \gamma K + 3\right)}$$

where $K = (x - y)^{2} + (y - z)^{2} + (z - x)^{2} \ge 0$. Noting that

$$(\alpha + \beta)^{2} (x + y + z)^{2} - 3(\alpha x + \beta y)^{2} - 3(\alpha y + \beta z)^{2} - 3(\alpha z + \beta x)^{2} - 3\gamma K$$
$$(-\alpha^{2} + \alpha\beta - \beta^{2} - 3\gamma)K = \left(-a + \frac{b}{2} - c\right)K \ge 0.$$

And from this we have the proof. \Box

We continue with the case ii) of the general problem: $A(x; y) = ax^2 + by + c$. In this case, we need condition: $a,b,c\geq 0$. If b=0, the problem have been considered, For the case a=0, it is easy to show that **Proposition 2.8** For b,c ≥ 0 we have

$$\sqrt{b\sum_{i=1}^{n} x_i + c} \le \sum_{i=1}^{n} \sqrt{bx_i + c} \le \sqrt{nb\sum_{i=1}^{n} x_i + n^2 c}.$$

Thus we need only considering the case a,b>0:

Theorem 2.9 i) $F_2(x; y) \ge \sqrt{a(x+y)^2 + 2b(x+y) + 4c}$ if $b^2 - 4ac \le 0$.

ii)
$$F_n \ge \sqrt{\frac{a}{n} \left(\sum_{i=1}^n x_i\right)^2 + b \sum_{i=1}^n x_i + c} + (n-1)\sqrt{c}$$

Proof. By changing variables again, we can assume that a=b=1. Then

i) By squaring

$$\left(\sqrt{x^2 + y + c} + \sqrt{y^2 + x + c}\right)^2 - \left(\left(x + y\right)^2 + 2\left(x + y\right) + 4c\right)$$
$$= 2\sqrt{y^2 + c + x}\sqrt{x^2 + c + y} - x - y - 2c - 2xy$$

and

$$\left(2\sqrt{y^2 + c + x}\sqrt{x^2 + c + y}\right)^2 - (x + y + 2c + 2xy)^2$$
$$= (x - y)^2 (4c + 4x + 4y - 1) \ge 0.$$

we obtain the result.

ii) We will show that $\sqrt{a} + \sqrt{b} \ge \sqrt{c} + \sqrt{a+b-c}$ for any non-negative number a,b,c with c = min(a,b,c). Indeed, twice squaring reduces the inequality to $(a-c)(b-c)\ge 0$. From this inequality we have

$$F = \sum_{i=1}^{n} \sqrt{x_i^2 + x_{i+1} + c}$$

$$\geq \sqrt{c} + \sqrt{x_1^2 + x_2^2 + x_2 + x_3 + c} + \sum_{i=3}^{n} \sqrt{x_i^2 + x_{i+1} + c}$$

$$\geq \dots$$

$$\geq (n-1)\sqrt{c} + \sqrt{\sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n} x_i + c}$$

$$\geq (n-1)\sqrt{c} + \sqrt{\frac{1}{n} \left(\sum_{i=1}^{n} x_i\right)^2 + \sum_{i=1}^{n} x_i + c}.$$

We have the proof. \Box

3. Cyclic inequality with power $\frac{1}{3}$

Let us consider the expression $f(x, y) = ax^3 + bx^2y + cxy^2 + dy^3$. In case of a+b+c+d=0, we know that there exists α, β, γ such that $ax^3 + bx^2y + cxy^2 + dy^3 = (x-y)(ax^2 + (a+b)xy - dy^2)$. However, if $a+b+c+d\neq 0$ we have

Lemma 3.1 For *a*,*b*,*c*,*d*,*x*,*y* are real numbers such that $a+b+c+d\neq 0$, there exist unique $\alpha,\beta,\gamma,\delta$ such that the equality

$$ax^{3} + bx^{2}y + cxy^{2} + dy^{3} = (\alpha x + \beta y)^{3} + (\gamma x + \delta y)(x - y)^{2}$$
(3.1)

holds.

Proof. The right hand side of (3.1) is equal to

$$(\alpha x + \beta y)^{3} + (\delta x^{3} + (\delta - 2\gamma)x^{2}y + (\gamma - 2\delta)xy^{2} + \delta y^{3})$$

Hence, by comparing the coefficients of both sides the equality of (3.1) we need to show that the following system has a unique solution

$$\begin{cases} \alpha^{3} + \gamma = a \\ 3\alpha^{2}\beta + \delta - 2\gamma = b \\ 3\alpha\beta^{2} + \gamma - 2\delta = c \\ \beta^{3} + \delta = d. \end{cases}$$
(3.2)

Indeed, by eliminating γ , δ from the equations in (3.2) we easily get

$$\begin{cases} \alpha + \beta = \sqrt[3]{a+b+c+d} \\ (2\alpha - \beta)(\alpha + \beta)^2 = b + 2a - d \\ (2\beta - \alpha)(\alpha + \beta)^2 = c + 2d - a \end{cases}$$

So we have

$$\begin{cases} \alpha = \frac{1}{3} \left(D + \frac{b+2a-d}{D^2} \right) = \frac{3a+2b+c}{3D^2} \\ \beta = \frac{1}{3} \left(D + \frac{c+2d-a}{D^2} \right) = \frac{b+2c+3d}{3D^2} \end{cases}$$

where, for simplicity, we put $D = \sqrt[3]{a+b+c+d}$. From the firts and fourth equations of (3.2) we have

$$\begin{cases} \gamma = a - \left(\frac{3a + 2b + c}{3D^2}\right)^3; \\ \delta = d - \left(\frac{b + 2c + 3d}{3D^2}\right)^3. \end{cases}$$
(3.3)

The lemma is proved. \Box

We now want to establish a cyclic inequality between the function

$$G = \sum_{k=1}^{n} \sqrt[3]{ax_{k}^{3} + bx_{k}^{2}x_{k+1} + cx_{k}x_{k+1}^{2} + dx_{k+1}^{3}},$$

and the sum $\sum_{i=1}^{n} x_i$ for non-negative numbers $x_1, x_2, ..., x_n$ with $x_{n+1} = x_1$.

Theorem 3.2 Suppose for a,b,c,d be real numbers whose sum is different from 0, and $27a(a+b+c+d)^2 \ge (3a+2b+c)^3$, $27d(a+b+c+d)^2 \ge (b+2c+3d)^3$ then

$$G \ge \sqrt[3]{a+b+c+d} \sum_{k=1}^{n} x_k$$

for all $x_1, x_2, ..., x_n \ge 0$ with $x_n = x_1$. We have the reverse inequality

$$G \leq \sqrt[3]{a+b+c+d} \sum_{k=1}^{n} x_k$$

if

$$27a(a+b+c+d)^{2} \leq (3a+2b+c)^{3}, 27d(a+b+c+d)^{2} \leq (b+2c+3d)^{3}.$$

Proof. The proof can be implied directly from the Lemma 3 by noting that with these assumptions we have $\gamma, \delta \ge 0$. \Box

Acknowledgements

This research is funded by the VNU University of Science under project number TN.16.30. The authors are grateful for this support.

References

- [1] V. Cirtoaje, Algebraic Inequalities: Old and New methods, GIL Publishing House (2006)
- [2] T. Tanriverdi, Reformulation of Shapiro's inequality, International Mathematical Forum, Vol. 7, 2012, no. 43, 2125 2130.
- [3] Z. Cvetkovski, Inequalities: Theorems, Techniques and Selected Problems, Springer (2012).
- [4] G. Hardy, J. Littlewood and G. Polya: Inequalities, Cambridge University Press, Cambridge (1988).
- [5] N.V. Luong, P.V. Hung, N.N Thang: Lectures on Cauchy inequalities, Hanoi National University Publisher (2014) (in Vietnamese).
- [6] D.S. Mitrinovic, E.S. Barnes, D.C.B. Marsh, J.R.M. Radok: Elementary inequalities, P. Noordhoff LTD -Groningen - The Netherlands (1964)
- [7] D.S. Mitrinovic, J.E. Pecaric, A.M. Fink: Classical and New Inequalities in Analysis, Kluwer Academic Publishers (1993).
- [8] B.G. Pacpatte: Mathematical inequalities, Elsevier (2005).