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Abstract: In this paper, the problem of nonlinear stability response of imperfect three-phase 

sandwich laminated polymer nanocomposite panels resting on elastic foundations in thermal 

environments is investigated using an analytical approach. Governing equations are derived 

based on classical shell theory, incorporating von Karman–Donnell type nonlinearity, initial 

geometrical imperfection, and Pasternak type elastic foundations. By applying the Galerkin 

method, an explicit expression to find the critical load and post-buckling load-deflection curves are 

obtained. The effects of fibres and nano-particles, material and geometrical properties, foundation 

stiffness, imperfection, and temperature on the buckling and post-buckling loading capacity of the 

three-phase sandwich laminated composite panel are analysed. 
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1. Introduction
∗∗∗∗ 

Composite materials are used in a large number of applications; however, understanding of the 

structure of three-phase composite materials is limited. Díaz et al. [1] reported on analytical 

expressions of effective properties for three-phase piezoelectric unidirectional composites. Duc and 

Minh [2] presented a method to determine bending deflection of three-phase polymer composite plates 

consisting of reinforced glass fibres and titanium dioxide (TiO2) particles. Lee et al. [3] investigated 

the silane modification of carbon nanotubes and its effects on the material properties of 

carbon/CNT/epoxy three-phase composites. Hoh et al. [4] carried out analytical investigations of the 

plastic zone crack sizes of a three-phase cylindrical composite material model. Wu et al. [5] developed 

a three-phase composite conductive concrete containing steel fibre, carbon fibre, and graphite for 

pavement deicing. Based on the Kirchhoff-Love isotropic and laminated plate theory, Wang and Zhou 
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[6] studied the internal stress resultants of a three-phase elliptical inclusion which is bonded to an 

infinite matrix through an interphase layer. Chung et al. [7] presented an investigation of polymeric 

composite films using modified titanium dioxide TiO2 nanoparticles for organic light emitting diodes. 

Kalamkarov et al. [8] analysed determining the effective thermal conductivity of a composite material 

with periodic cylindrical inclusions of a circular cross-section arranged in a square grid. Zhang et al. 

[9] studied the enhancement of dielectric and electrical properties in BT/SiC/PVDF three-phase 

composites through microstructure tailoring. Chen et al. [10] studied the self-biased effect and dual-

peak magnetoelectric effect in different three-phase magnetostrictive/piezoelectric composites. 

Recently, Duc and Thu [11] studied the nonlinear static analysis of a three-phase polymer composite 

plate under thermal and mechanical loads. Further, Duc et al. [12] presented an investigation on the 

nonlinear dynamic response and vibration of an imperfect laminated three-phase polymer 

nanocomposite panel resting on elastic foundations and subjected to hydrodynamic loads. 

Sandwich laminated plates, shells and panels are basic structures used in engineering and the wider 

industry. These structures play an important role as the main supporting component in all kinds of 

structures in machinery, civil engineering, ship-building, and flight vehicle manufacturing, amongst 

others. The stability of composite structures is the first and foremost important condition in optimal 

design. Based on a fibre section analysis approach using refined material constitutive models, Hu et al. 

[13] developed an analysis program to analyse the moment–curvature behaviour of concrete-filled 

steel plate composite shear walls. Song et al. [14] investigated the sound transmission of a sandwich 

plate and its reduction using the stop-band concept. Mauritsson and Folkow [15] derived a hierarchy 

of dynamic plate equations based on the three-dimensional piezoelectric theory for a fully anisotropic 

piezoelectric rectangular plate. Bochkarev et al. [16] investigated the dynamic behavior of elastic 

coaxial cylindrical shells interacting with two flows of a perfect compressible fluid by application of 

the finite element method. Joshi et al. [17] proposed an analytical model for free vibration and the 

geometrically linear thermal buckling phenomenon of a thin rectangular isotropic plate containing a 

continuous line surface or internal crack located at the centre of the plate using classical plate theory. 

Kang et al. [18] presented the isogeometric analysis which enables the topologically complex shell 

structure with a single NURBS patch to be handled. Jam and Kiani [19] introduced linear buckling 

analysis for nanocomposite conical shells reinforced with single-walled carbon nanotubes subjected to 

lateral pressure. The free vibration response of functionally graded material shell structures was 

studied by Wali et al. [20] using an efficient 3D-shell model based on a discrete double directors shell 

element. Li et al. [21] presented the piecewise shear deformation theory for free vibration of 

composite and sandwich panels.  

This paper investigated the nonlinear stability response of an imperfect sandwich laminated three-

phase polymer composite panel resting on elastic foundations in thermal environments by an 

analytical approach. Governing equations are derived based on the classical shell theory, incorporating 

von Karman – Donnell type nonlinearity, initial geometrical imperfection, and Pasternak type elastic 

foundations. By applying the Galerkin method, the explicit expression to find critical loads and the 

post-buckling load-deflection curves are obtained. The effects of fibres and particles, material and 

geometrical properties, foundation stiffness, imperfection and temperature on the buckling and post-

buckling loading capacity of the three-phase composite panel are analysed.  

2. Theoretical formulation  

In this paper, the algorithm that was successfully applied in [11, 12] to determine the elastic 

modules of three-phase composites has been used. According to this algorithm, the elastic modules of 
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three-phase composites are estimated using two theoretical models of the two-phase composites 

consecutively: nDm=Om+nD [11, 12]. This paper considers a three-phase composite reinforced with 

particles and unidirectional fibres, so the model of problem will be: 1Dm=Om+1D.  Firstly, the 

modules of the effective matrix Om which is called “effective modules”, are calculated. In this step, 

the effective matrix consists of the original matrix and added particles. It is considered to be 

homogeneous, isotropic, and as having two elastic modules. The next step is estimating the elastic 

modules for a composite material consisting of the effective matrix and unidirectional reinforced 

fibres.   

Assuming that all the component phases (matrix, fibres and particles) are homogeneous and 

isotropic, we will use , , ; , , ; , ,
m a c m a c m a c

E E E ν ν ν ψ ψ ψ  to denote Young’s modulus, Poisson’s ratio 

and the volume fraction for the matrix, fibres and particles, respectively. Following [11, 12], the 

modules for the effective composite can be obtained as shown below: 
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,E ν  can be calculated from ( ,G K ) as: 
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The elastic moduli for three-phase composites reinforced with unidirectional fibres are chosen to 

be calculated using Vanin’s formulas [23], as: 
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in which 

3 4 , 3 4 .
a a

x xν ν= − = −   (6) 

Similar to the elastic modulus, the thermal expansion coefficient of the three-phase composite 

materials were also identified in two steps. First, to determine the coefficient of thermal expansion of 

the effective matrix [22]: 
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in which α ∗  is the effective thermal expansion coefficient of  the effective matrix, and 
m

α ,
c

α  are 

the thermal expansion coefficients of the original matrix and particles, respectively. Then, determining 

two coefficients of thermal expansion of the three-phase composite, using formulas from [23] of 

Vanin, gives: 
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Consider a three-phase composite panel as shown in Fig. 1. The panel is referred to a Cartesian 

coordinate system , ,x y z , where xy  is the mid-plane of the panel and z  is the thickness coordinator 

( / 2 / 2)h z h− ≤ ≤ . The radii of curvatures, length, width, and total thickness of the panel are , ,R a b  

and h , respectively. 

 

Fig. 1. Geometry and coordinate system of sandwich laminated three-phase  

composite panels on elastic foundations. 
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The three phase composite panel–foundation interaction is represented by a Pasternak model as 

[12, 24]: 

2

1 2 ,
e

q k w k w= − ∇  (9)                                             

where 2 2 2 2 2/ /x y∇ = ∂ ∂ + ∂ ∂ , and w  is the deflection of the panels, 1k  is the Winkler foundation 

modulus, and 2k  is the shear layer foundation stiffness of the Pasternak model.
 

In this study, classical shell theory is used to establish the governing equations and determine the 

nonlinear response of three-phase composite panels [12].  
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in which ,u v  are the displacement components along the ,x y  directions, respectively. 

Hooke’s law for a laminated composite panel is defined as: 
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in which k  is the number of layers and 

' 4 4 2 2

11 11 22 12 66os sin 2( 2 )sin cos ,Q Q c Q Q Qθ θ θ θ= + + +  

' 4 4 2 2

12 12 11 22 66( os sin ) ( 4 )sin cos ,Q Q c Q Q Qθ θ θ θ= + + + −  

' 3 3

16 12 22 66 11 12 66( 2 )sin os ( 2 )sin os ,Q Q Q Q c Q Q Q cθ θ θ θ= − + + − −  (14) 

' 4 4 2 2

22 11 22 12 66sin os 2( 2 )sin cos ,Q Q Q c Q Qθ θ θ θ= + + +  

' 3 3

26 11 12 66 12 22 66( 2 )sin os ( 2 )sin os ,Q Q Q Q c Q Q Q cθ θ θ θ= − − + − +  

[ ]' 4 4 2 2

66 66 11 22 12 66(sin os ) 2( ) sin os ,Q Q c Q Q Q Q cθ θ θ θ= + + + − +  



P.V. Thu, N.D. Duc/ VNU Journal of Science: Mathematics – Physics, Vol. 32, No. 1 (2016) 20-36 

 

25 

where θ  is the angle between the fibre direction and the coordinate system. The force and moment 

resultants of the sandwich laminated composite panels are determined by: 

[ ]
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 Substitution of Eq. (10) and Eq. (12) into Eq. (15), gives the constitutive relations as:  
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The nonlinear equilibrium equations of the composite panels based on classical shell theory are 

given by: 

, , 0,x x xy yN N+ =  (18a) 

, , 0,xy x y yN N+ =  (18b) 
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Calculated from Eq. (16a), we have:  

0 * * * * * * * *

11 12 16 11 12 16 11 1 12 2( ),x x y xy x y xyA N A N A N B k B k B k T D Dε α α= + + − − − + ∆ +  

0 * * * * * * * *

12 22 26 21 22 26 21 1 22 2( ),y x y xy x y xyA N A N A N B k B k B k T D Dε α α= + + − − − + ∆ +  (19) 

0 * * * * * * * *

16 26 66 61 62 66 16 1 26 2( ),xy x y xy x y xyA N A N A N B k B k B k T D Dγ α α= + + − − − + ∆ +  

where 

2 2 2

11 22 66 11 26 12 16 26 66 12 22 162 ,A A A A A A A A A A A A∆ = − + − −  



P.V. Thu, N.D. Duc / VNU Journal of Science: Mathematics – Physics, Vol. 32, No. 1 (2016) 20-36 

 

26 

2
* * *22 66 26 16 26 12 66 12 26 22 16
11 12 16, , ,

A A A A A A A A A A A
A A A

− − −
= = =

∆ ∆ ∆
 

2
* *12 16 11 26 11 22 12
26 66, ,

A A A A A A A
A A

− −
= =

∆ ∆
 

* * * * * * * *

11 11 11 12 12 16 16 22 12 12 22 22 26 26

* * * * * * * *

66 16 16 26 26 66 66 12 11 12 12 22 16 26

* * * * * * * *

21 12 11 22 12 26 16 16 11 16 12 26 16 66

* * * *

61 16 11 26 12 66

, ,

, ,

, ,

B A B A B A B B A B A B A B

B A B A B A B B A B A B A B

B A B A B A B B A B A B A B

B A B A B A B

= + + = + +

= + + = + +

= + + = + +

= + + * * * *

16 26 12 16 22 26 26 66

* * * * * * * *

62 16 12 26 22 66 26 11 11 11 12 12 16 16

* * * * * * * *

22 12 12 22 22 26 26 12 11 12 12 22 16 26

* * * * * * *

21 12 11 22 12 26 16 16 16 11 26 12 6

, ,

, ,

, ,

,

B A B A B A B

B A B A B A B D A A A A A A

D A A A A A A D A A A A A A

D A A A A A A D A A A A A

= + +

= + + = + +

= + + = + +

= + + = + + *

6 16

* * * *

26 16 12 26 22 66 26

,

.

A

D A A A A A A= + +

 (20) 

Substituting once again Eq. (19) into the expression of ijM  in Eq. (16b), then ijM  into Eq. (18c) 

leads to: 
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 ( ),f x y  is the stress function defined by: 

, , ,, , .x yy y xx xy xyN f N f N f= = = −
 (23) 

 For an imperfect composite panel, Eq. (21) is modified into the following form: 
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in which *( , )w x y  is a known function representing the initial small imperfection of the panels.  

The geometrical compatibility equation for an imperfect composite panel is written as [12]: 

,0 0 0 2 * * *
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From the constitutive relations in Eq. (19), in conjunction with Eq. (23), one can write: 
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Setting Eq. (26) into Eq. (25) gives the compatibility equation of an imperfect composite panel as: 
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where 

* * * * * * * * *

1 12 66 2 11 22 66 3 26 61 4 16 622 , 2 , 2 , 2 .E A A E B B B E B B E B B= + = + − = − = −           (28) 

Eq. (24) and Eq. (27) are nonlinear equations in terms of variables w  and f , and 

are used to investigate the static stability of thin composite panels in thermal environments. 

In the present study, the edges of the composite panels are assumed to be simply supported. Two 

edges 0,x a=  are freely movable, whereas the remaining two edges 0,y b=  are immovable. The 

boundary conditions are defined as: 

0xy y x xw N M Pφ= = = = = , 0x x
N N=  at  0,x a=  

0x y yw v M Pφ= = = = = , 0y yN N=  at  0,y b=  (29) 

where 0 0,x yN N  are fictitious compressive edge loads at immovable edges.  

The approximate solutions of *,w w  and f  satisfying boundary conditions Eq. (29) are assumed 

as: 

( ) ( )*, , sin sin ,
m n

w w W h x yµ λ δ=
 (30a) 

1 2 3 4

2 2

0 0

cos2 cos2 sin sin os os

1 1
,

2 2

m n m n m n

x y

f A x A y A x y A c xc y

N y N x

λ δ λ δ λ δ= + + +

+ +
 (30b) 

in which / ,
m

m aλ π= /
n

n bδ π= , W  is amplitude of the deflection, and µ  is the imperfection 

parameter. The coefficients ( 1 4)
i

A i = ÷  are determined by substitution of Eqs. (30a) and (30b) into 

Eq. (27), as: 
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( ) ( )

( ) ( )

2 2

1 2* 2 * 2

22 11

2 4 1 3 2 3 1 4

3 42 2 2 2

2 1 2 1

2 , 2 ,
32A 32A

, ,

n m

m n

A W h W A W h W

Q Q Q Q Q Q Q Q
A W A W

Q Q Q Q

δ λ
µ µ

λ δ
= + = +

− −
= =

− −

            (31) 

with 

( ) ( )

( )

* 4 * 4 2 2 * 3 * 3

1 22 11 1 2 16 26

2
* 4 * 4 2 2 3 3

3 21 12 2 4 3 4

, 2 ,

, .

m n m n m n m n

m

m n m n m n m n

Q A A E Q A A

Q B B E Q E E
R

λ δ λ δ λ δ λ δ

λ
λ δ λ δ λ δ λ δ

= + + = +

 
= − − − = + 
 

 (32) 

Substitution of Eqs. (30a), and (30b) into Eq. (24) and applying the Galerkin procedure for the 

resulting equation yields: 

( )2
2 4 1 34 4 2 2

1 2 3 2 2

2 1

[
4

m
m n m n

Q Q Q Qab
P P P

R Q Q

λ
λ δ λ δ

− 
+ + + − 

− 
 

( )
( )

( )2 3 1 43 3 4 4 2 2 4 4 2 2

4 5 6 7 8 2 12 2

2 1

2 ]m n m n m n m n m n m n

Q Q Q Q
P P P P P k k W

Q Q
λ δ λ δ λ δ λ δ λ δ λ δ

−
− + + + + − + + −

−
 

( )
( )2 4 1 3

2 2

2 1

8

3
m n

Q Q Q Q
W W h

Q Q
λ δ µ

−
+ +

−
 

( )1 2

* * *

22 22 11

2
2

6 3

n m n

m

P P
W W h

RA A A

δ λ δ
µ

λ

  
+ − + +  

  
 (33) 

( )( )
4 4

* *

22 11

2
64

n mab
W W h W h

A A

δ λ
µ µ

 
− + + + 

 
 

( )( )0 2 2

0 0

44
0,

4

y

x m y n

m n m n

Nq ab
N N W h

R
λ δ µ

λ δ λ δ
+ + − + + =  

where ,m n  are odd numbers. This is the basic equation governing the nonlinear response of three-

phase polymer composite panels under mechanical and thermal loads. 

3. Nonlinear stability analysis 

3.1. Thermal stability analysis 

Consider a simply supported polymer composite panel subjected to temperature environments 

uniformly raised from the stress-free initial state 
i

T  to the final value fT , and the temperature 

increment f iT T T∆ = −  is constant. In this case, 0q = . Note that there is no load at two edges 

0,y a= , and we have 0yoN = . 

The in-plane condition on immovability at 0,y b= , i.e. 0v =  at 0,y b= , is fulfilled in an average 

sense as: 
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0 0

0.

a b
v

dydx
y

∂
=

∂∫ ∫
 (34) 

From Eq. (11) and Eq. (19), one can obtain the following expressions in which Eq. (23) and 

imperfection have been included: 

* * * * * *

12 , 22 , 26 , 21 , 22 , 26 ,

2

,* * *

21 1 22 2 , ,y

2

( ) .
2

yy xx xy xx yy xy

y

y

A f A f A f B w B w B w
y

ww
T D D w w

R

ν

α α

∂
= + − + + +

∂

+∆ + + − −

 (35) 

Substitution of Eq. (30a) and Eq. (30b) into Eq. (35), and then the results into Eq. (34) gives 

fictitious edge compressive loads as: 

( )1 2 32 ,xoN J W J W W h J Tµ= + + + ∆                                                                                  (36) 

with specific expressions of coefficients ( 1,3)
i

J i =  defined in Appendix A.             

Subsequently, setting Eq. (36) into Eq. (33) gives: 

( )
( )

( )
( )1 1 1 1

1 2 3 4

2
2 .

W WW
T b W b b b W W

W W

µ
µ

µ µ

+
∆ = + + − +

+ +
                     (37) 

in which specific expressions of coefficients 1 ( 1,4)
i

b i =  are given in Appendix A  and  .
W

W
h

=  

3.2. Thermo-mechanical stability analysis 

The simply supported three-phase polymer composite panel with tangentially restrained edges is 

assumed to be subjected to external pressure q  uniformly distributed on the outer surface of the panel 

and exposed to a uniformly raised temperature field. 

Setting Eq. (36) into Eq. (33) gives: 

( ) ( ) ( )( ) ( )1* 1* 1* 1* 1*

1 2 3 4 52 2 .q b W b W W b W W b W W W b W Tµ µ µ µ µ= + + + + + + + + + ∆     (38) 

in which specific expressions of coefficients 1* ( 1,5)
i

b i =  are given in Appendix B 

4. Numerical results and discussion 

We chose the three-phase composite polymer with the properties of the component phase as shown 

in Table 1. 

Table 1. Properties of the component phases for the three-phase composites [11, 12]. 

Component phase Young’s modulus E  Poisson’s ratio ν  Thermal expansion 

coefficient α  

Matrix epoxy 2.75 GPa  0.35  654 10 /o
C

−×  

Glass fibre 22  GPa  0.24  65 10 /o
C

−×  

Titanium oxide TiO2 5.58  GPa  0.2  64 10 /o
C

−×  
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To validate the accuracy of the present method, Fig. 2 compares the results of this paper for 

symmetric sandwich laminated three-phase polymer composite panels resting on elastic foundations 

under uniform temperature rise with a stacking sequence of [0/90/0/90/0] and immovable edges, with 

the results given in the work of Duc and Thu [11]. As can be seen, good agreement is obtained in this 

comparison.  

 

Fig. 2. Comparisons of nonlinear load-deflection curves with the results of Duc and Thu (2014) for the 

symmetric sandwich laminated three-phase polymer composite panels under uniform temperature rise. 

The results presented in this section from Eq. (31) correspond to a deformation mode with half-

wave numbers 1m n= = . 

Scanning electron microscope (SEM) instrumentation at the Laboratory for Micro-Nano 

Technology, University of Engineering and Technology, Vietnam National University, Hanoi, was 

used. Figs. 3 and 4 show the SEM images of fabricated samples of composite structures, which were 

made in the Institute of Ship building, Nha Trang University [12]. Fig. 3 illustrates an SEM image of 

2Dm composite polymer two-phase material (glass fibre volume fraction of 25% without particles), 

and Fig. 4 shows an SEM image of 2Dm composite polymer three-phase material (glass fibre volume 

fraction of 25% and titanium dioxide particle volume fraction of 3%). Obviously, when the particles 

are doped, the air cavities significantly reduce and the material was finer. In other words, the particles 

enhance the stiffness and penetration resistance of the materials. 

Next, we will investigate the influences of fibres and particles, material and geometrical 

properties, foundation stiffness, imperfection, and temperature on the nonlinear response of the three-

phase composite panel. 

We consider the sandwich five-layer symmetric panel with a stacking sequence of [45/-45/0/-

45/45]. The mass density of the panel is 31550 / .kg mρ =  

Figs. 5 and 6 show the effects of fibres volume fraction 
a

ψ  and particle volume fraction 
c

ψ  on the 

nonlinear response of the three-phase composite panels under uniform temperature rise and uniform 

external pressure, respectively. Obviously, the load-carrying capacity of the panel increases when the 

fibre and the particle volume fractions increase. 



P.V. Thu, N.D. Duc/ VNU Journal of Science: Mathematics – Physics, Vol. 32, No. 1 (2016) 20-36 

 

31 

    

Fig 3. SEM image of 2Dm composite two-phase 

material (fibre volume fraction is 25% without 

particles). 

 

Fig. 4. SEM image of 2Dm composite three-phase 

material (fibre volume fraction is 25% and particle 

volume fraction is 3%). 
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Fig. 5. Effects of fibre volume fraction 
a

ψ  on the 

nonlinear response of the three-phase nanocomposite 

panels under uniform temperature rise. 

Fig. 6. Effects of particle volume fraction 
c

ψ  on the 

nonlinear response of the three-phase nanocomposite 

panels under uniform external pressure. 
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Fig. 7. Effect of imperfection parameter µ  on the 

nonlinear response of the three-phase nanocomposite 

panels under uniform temperature rise. 

Fig. 8. Effect of temperature increment on the 

nonlinear stability of the three-phase nanocomposite 

panels under uniform external pressure. 

The effect of initial imperfection with the coefficient µ  on the nonlinear response of the three-

phase nanocomposite panels under uniform temperature rise is shown in Fig. 7. Three values of 

0, 0.15, 0.3µ =  are used. It can be seen that the initial imperfection considerably impacted on the 

nonlinear response of the three-phase nanocomposite panels. 
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Fig. 9. Effect of the linear Winkler foundation on the 

nonlinear response of the three-phase nanocomposite 

panels under uniform external pressure. 

Fig. 10. Effect of the Pasternak foundation on the 

nonlinear response of the three-phase 

nanocomposite panels under uniform external 

pressure. 
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Fig. 8 indicates the effects of temperature increment T∆
 
on the post-buckling response of the 

three-phase nanocomposite panels under uniform external pressure with immovable edges. As can be 

seen, an increase in temperature increment leads to a reduction of load-carrying capacity of the panels.    

Figs. 9 and 10 illustrate the effects of elastic foundations with coefficients 1k
 
and 2k  on the 

nonlinear response of three-phase nanocomposite panels under uniform external pressure, respectively. 

Clearly, the load-carrying capacity of the panel becomes considerably higher due to the support of 

elastic foundations. Furthermore, the beneficial effect of the Pasternak foundation on the post-buckling 

response of the three-phase nanocomposite panels is better than of the Winkler one. 

Figs. 11 and 12 show the influences of /b a  ratio and /b h  ratio on the nonlinear postbuckling of 

three-phase nanocomposite panels under uniform temperature rise and uniform external pressure, 

respectively. One can see that the load-carrying capacity of the panel increases when the /b a  ratio 

and /b h  ratio decrease.  

The effect of /R h  ratio on the nonlinear response of three-phase nanocomposite panels under 

uniform external pressure is also presented in Fig. 13.  The results from this figure show that the 

buckling and post-buckling loads are very sensitive to a change of /R h  ratio. 
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Fig. 11. Effect of  /b a  ratio on the nonlinear response 

of three-phase nanocomposite panels under uniform 

temperature rise. 

Fig. 12. Effect of /b h  ratio on the nonlinear 

response of three-phase nanocomposite panels 

under uniform external pressure. 

Fig. 14 compares the nonlinear static stability of three-phase sandwich laminated polymer 

composite panels in two cases: a five-layer asymmetric panel with a stacking sequence of [0/45/45/-

45/-45]; and a five-layer symmetric panel with a stacking sequence of [45/-45/0/-45/45]. This 

comparison is performed on panels with the same ply orientations and the same thickness. The result 

shows that the load-carrying capacity of a symmetric panel is higher than that of an asymmetric panel.
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Fig. 13. Effect of /R h  ratio on the nonlinear response 

of three-phase nanocomposite panels under uniform 

external pressure. 

Fig. 14. Effects of fibre angles on the nonlinear 

response of symmetric and asymmetric three-phase 

nanocomposite panels under uniform temperature rise. 

5. Conclusions 

Based on classical shell theory, this paper investigated the nonlinear stability analysis of imperfect 

sandwich laminated three-phase polymer nanocomposite panels resting on elastic foundations in 

thermal environments.   

From the numerical results, the following conclusions are made: 

- Increasing the density of fibres and particles in three-phase composite polymers improves the 

mechanical and thermal loading ability of the composite panels. However, the effects of the fibres are 

stronger than those of the particles.  

- With the same thickness and size, the thermal loading ability of the symmetric panel is better 

than that of the asymmetric panel. 

- The elastic foundations have a strong effect on the nonlinear response of the three-phase 

composite panels; and the beneficial effect of the Pasternak foundation is better than the Winkler one. 

- The geometry, initial imperfection, and temperature have a significant effect on the stability of 

the composite panel.  
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