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Abstract: In 2007, N. H. Du and L. H. Tien [1] shown that the exponential stability of the linear 

equation on time scales implies the exponential stability of the suitable small enough Lipchitz 

perturbed equation. In this paper, we shall prove that if the perturbation is arbitrary small order 1 

then the above argument is not true which is called Perron effect. 
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1. Introduction and preliminaries

 

Theory of dynamic equations on time scales was introduced by Stefan Hilger [2] in order to unify 

and extend results of differential equations, difference equations, q-difference equations, etc. There are 

many works concerned with the stability of dynamic equations on time scales such as exponential 

stability (see [3-5]); dichotomies of dynamic equations (see [6]). 

In this paper, we want to go further in the stability of dynamic equations. More precisely, we show 

that the exponential stability of the linear equation on time scales does not imply the exponential 

stability of the small enough Lipchitz perturbed equation if the perturbation is arbitrary small order 1 

which is called Perron effect. Moreover, our results are different from examples of Perron type in both 

continuous and discrete cases (see [7-9]). 

We now introduce some basic concepts of time scales, which can be found in [10, 11]. A time 

scale  is defined as a nonempty closed subset of the real numbers. Define the forward jump operator 

:   is defined by ( t ) inf{ s : s t }     and the graininess function ( t ) ( t ) t    for any 

t . In the following discussion, the time scale  is assumed to be unbounded above and below. 

We have the following several basis definitions (see [10, 11]). 
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      Definition 1.1. Let A  be an m n  matrix-valued function on . We say that A  is rd-continuous 

on  if each entry of A  is rd-continuous on , and the class of all such rd-continuous m n  matrix-

valued funtions on  is denoted by 

 m n

rd rd rdC C ( ) C , .   

We say that A is differentiable on  provided each entry of A  is differentiable on , and in this 

case we put 

   i , j i , j 1 i m,1 j n1 i m,1 j n,
A a  where A a . 

      
   

Definition 1.2 (Regressivity). An n n  matrix-valued function A  on a time scale  is called 

regressive (with respect to ) provided 

I ( t )A( t ) is invertible for all t ,   

and the class of all such regressive function is denoted 

 n n( ) , .   

Throughout this paper we only consider rdA( t ) C  . 

Definition 1.2. Assume A  and B  are regressive n n  matrix-valued functions on . Then we 

define A B  by 

 A B ( t ) A( t ) B( t ) ( t )A( t )B( t ) for all t ,      

 and we define A  by 

   
1

A ( t ) A( t ) I ( t )A( t )  for all t .


     

Remark 1.1.   n n, ,   is a group. 

Definition 1.4 (Matrix Exponential Function). Let 0t   and assume that A  is an 

n n matrix-valued function. The unique matrix-value solution of the IVP 

0x A( t )x, x( t ) I ,                                                                                                          (1) 

where I  denotes as usual the n n  identity matrix, is called the matrix exponential function (at 

0t ), and it is denoted by A 0e (·,t ) . 

 We collect some fundamental properties of the exponential function on time scales. 

Theorem 1.1 (see [10]). If A,B  are matrix-valued function on , then 

(i) 0e ( t,s ) I  and Ae ( t,t ) I , 

(ii)      A Ae ( t ),s I ( t )A( t ) e t,s   , 

(iii)   *

*1

A A A
e ( t,s ) e ( s,t ) e ( s,t )


     , 

(iv) A A Ae ( t,s )e ( s, ) e ( t, )  , 

(v) A B A Be ( t,s )e ( t,s ) e ( t,s )  if Ae ( t,s )  and B( t )  commute. 

If n 1 , one have the equivalent definition of the exponential function on time scales by 
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t

p ( )

s

e ( t ,s ) exp ( p( ))   
  

  
  
  

with 

h
u h

z if h 0log(1 uz )
( z ) lim

u log(1 hz ) / h if h 0


 
  

 
. 

For any p ( , )  and s,t , where log  is principal logarithm. It is easy that with z , 

the inverse transformation of 
h  is given by 

uz
1

h zhu h

z if h 0
e 1

( z ) lim 1
u ( e 1) if h 0

h

 

 
 

  
 



. 

We refer [10] and [11] for more information on analysis on time scales. From now on, we fix a 

0t  , 0t 1  and denote 0: [ t , )    with the graininess of underlying time scale is bounded on 
 , i.e., 

t

M sup ( t )


  . Besides, considered time scales are always upper unbounded, i.e., for all 

n , there exists nt  , 
nt n . We consider a dynamic equation on time scale  

    x ( t ) F( t,x ), t ,       (2) 

where n nF( t,x ) :     is rd-continuous in the first variable with F( t,0 ) 0 . We also 

suppose that F  satisfies all conditions such that (2) has a unique solution x( t )  with 0 0x( t ) x  on 

0[ t , ) . 

The following definition is a concept of exponential stability as in [1]. 

Definition 1.5. 

(i) The solution x 0  of Eq. (2) is said to be exponentially stable if there exists a positive constant 

  with     such that for every   , there exists N N( ) 1   such that the solution of (2) 

through ( ,x( ))   satisfies 

|| x( t )|| N || x( )||e ( t, )  for all t ,t .   

    

(ii) The solution x 0  of Eq. (2) is said to be uniformly exponentially stable if it is exponentially 

stable and constant N  can be chosen independently of   . 

We now consider the perturbed equation of equation (1)  

x ( t ) A( t )x( t ) f ( t,x ), t ,     (3) 

where n nf ( t,x ) :     is rd-continuous in the first argument with f ( t,0 ) 0 . 

The following theorem is well known, due to Du and Tien et all. [1] 

Theorem 1.2. If the following conditions are satisfied 

(i) Equation (1) is exponentially stable with constants   and N , 

(ii) || f ( t,x )|| L|| x||  for all t  , 

(iii) NL 0   , 
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then the solution x 0  of Eq. (3) is exponentially stable.  

We have a natural question that How the previous theorem is? if the conditions (ii) and (iii) of 

previous theorem are replaced by arbitrary small order 1 property where perturbation, say f ( t ,x ) , is 

called arbitrary small order   if  

x 0

|| f ( t ,x )||
lim .

|| x ||
   

Denote s( t ) t sinlog t ; a , M  and b  are positive constants satisfies b 2 , 

s( 2 s )

s M

2 e 1
H( M ) 2a with H( M ) lim .

2 b s






  


   (4) 

Remark 1.2. It is easy to check that 1/ 2H( M ) 2  for all M [0, )  .  

With previous conditions, we now give the main theorems in this paper which is the answer of the 

question. 

Theorem 1.3. The trivial solution of the linear equation 

1 1

1

2 ( t ) 2

x (( ab ) ( 2a ))x

x [ ( s ( t )) ( 2a )]x



 




 







 (5) 

is exponential stable.  

Consider the perturbed equation 

1 1

1 1

2 ( t ) 2 2 ( t ) 2 1

x (( ab ) ( 2a ))x

x [ ( s ( t )) ( 2a )]x abx ( t )ab[ ( s ( t )) ( 2a ]
.

) x x



   

    



 



  

 (6) 

The following theorem is Perron effect for the exponential stability of the linear equation on time 

scales with a perturbation are arbitrary small order 1. 

Theorem 1.4. The trivial solution of Eq. (6) is not exponential stable. 

It also should be noticed that in the case   then the pair of equations (5) and (6) become  

' '

1 1 1 1

' '

2 2 2 2 2 1

x a( b 2 )x x a( b 2 )x
and

x [ s ( t ) 2a ]x x [ s ( t ) 2a ]x abx x

     
 

        

 

with a , b  satisfy 1 a 1 / ( 2 b )   , which is the differential example of the Perron's one (see [7, 

8]). Besides, we also obtain the differential example in the difference case of N. V. Kuznetsov, G. A. 

Leonov ([9]) as the following pair 

1 1

2 2

ab 1
x ( n 1) x ( n )

1 2a

exp( s( n 1) s( n ))
x ( n 1) ( n )

2

,

x
1 a


 



 
 









 

and  
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1 1

2 2 2 1

ab 1
x ( n 1) x ( n )

1 2a

( ab 1)exp( s( n 1) s( n ))
x ( n 1) x ( n ) abx ( n ) x ( n 1)

1 2

,

a


 



 






   







 

with a , b  satisfy 3( e 1) / 2 a 1 / ( 2 b ).     

2. Proof of main theorems 

This section is devoted to the proof of Theorem 1.3 and 1.4. We shall present these proof in two 

subsection. 

Proof of Theorem 1.3. We first consider the solution x( t )  of Eq. (5) with initial condition 

1 0( x ( t ),0 ) , 1 0x ( t ) 0 . Then x  has the form 

( ab ) ( 2a ) 0 1 0x( t ) ( e ( t,t )x ( t ),0 ) . 

It is clear that  

     
x    ( ab ) ( 2a ) 0 1 0e ( t,t )| x ( t )|

    

            
0

t

1 0
u ( )

t

1
exp lim log(1 (( ab ) ( 2a ))u ) | x ( t )|

u 


  
  

  
  

            
0

t

1 0
u ( )

t

1 u( ab 2a )
exp lim log 1 | x ( t )|

u 1 2a ( ) 


 

   
   

   
  

           
0

t

1 0
u ( )

t

1 ua( b 2 )
exp lim log 1 | x ( t )| ( since b 2 )

u 1 2aM 


   
    

   
  

Set 
a( 2 b )

L 0
1 2aM


 


. The previous relation implies 

 

L 0 1 0|| x || e ( t,t )| x ( t )| . (7) 

Second, we consider the solution with initial condition 2 0(0,x ( t )) . Then the x  is given by 

 11 2 0 2 0( s ) ( 2a )
x( t ) ( x ( t ),x ( t )) 0,e ( t,t )x ( t ) .


   

Then, we have 

1 0 2 0( s ) ( 2a )
|| x( t )||e ( t,t )| x ( t )|


  

 
0

t

1

( ) 2 0
u ( )

t

1
exp lim log 1 u( ( s ) ( 2a )) | x ( t )|

u



 
 

 
  

  
  
  

0

1t
( )

2 0
u ( )

t

u( ( s ) 2a )1
exp lim log 1 | x ( t )|,

u 1 2a ( )



 

 




 

   
       

  

(8) 
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where  

hs ( ) h(sinlog( ) ( ( ))coslog c.log ( ))
1

( )
h ( ) h ( )

e 1 e 1
( s ( )) lim lim ,

h h

      


 
   

 
 

  
   (9) 

with c [ , ( )]      (by Theorem 1.87 in [10]). One have two following cases. 

Case 1. If   is right - scattered then  

log( ( )) log 1 ( ) 1
log ( ) log 1 .

( ) ( )

      


     

   
    

 
 

Hence, from (9) we obtain 

( )( 2 M / ) ( )( 2 M )
1

( )

e 1 e 1
( s ( ))

( ) ( )

    


  
   

 
  

  , 

      if 0t 1   . Since 0 ( t ) M   and 
x( 2 M )e 1

f ( x )
x

 
  is  the increasing function on (0,M ]  

therefore 

M ( 2 M )
1

( )

e 1
( s ( )) H( M ).

M



  


 
   

Case 2. If   is right - dense then log ( ) 1 /   . Thus, from (9) and Remark 1.2 we obtain 

1

( )( s ( )) sinlog( ) coslog( ) 2 H( M ).

          

By the hypothesis (4), H( M ) 2a , we deduce 1

( )( s ) 2a 0

     . Combining with (8), it implies 

0

t

2 0
u ( )

t

1 u( 2a H( M ))
|| x( t )|| exp lim log 1 | x ( t )|

u 1 2Ma 


   
   

   
  

           ( 2a H( M ))/ ( 1 2Ma ) 0 2 0e ( t,t )| x ( t )|   . 

(10) 

From (7), (10) and the condition of a , b  and M  implies the trivial solution of Eq. (2) is 

exponential stable.  

Proof of Theorem 1.4. From the first equation of system (5) we have 

1 1 0 ( ab ) ( 2a ) 0x ( t ) x ( t )e ( t,t ) . 

Therefore, the second one becomes 

1 1

2 ( t ) 2 2 ( t ) 2 1 0 ( ab ) ( 2a ) 0x [ ( s ( t )) 2a]x abx ( t )ab[ ( s ( t )) 2a]x [ x ( t )e ( t,t )] .   

         (11) 

By the variation of constants formula we have the solution of (11) has the form 

1 1

0

t

2 2 0 0 1 0 ( ab ) ( 2a ) 0( ( s ) 2a ) ( ab ) ( ( s ) 2a ) ( ab )

t

x ( t ) x ( t )e ( t ,t ) e ( t , ( ))[ x ( t )e ( ( ),t )] 
  

      
  

1 1 1

0

t

2 2 0 0 1 0 0 ( ab ) ( 2a ) 0 0( ( s ) 2a ) ( ab ) ( s ) ( s )

t

x ( t ) x ( t )e ( t ,t ) x ( t )e ( t ,t )e ( t ,t ) e ( t , ( )) .  
    

    
     

Choosing 2 0x ( t ) 0 , we deduce 
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1 1

0

t

2 1 0 0 ( ab ) ( 2a ) 0 0( s ) ( s )

t

x ( t ) x ( t )e ( t ,t )e ( t ,t ) e ( t , ( )) . 
  

      (12) 

Moreover, by (3.3) in [12] and ( 2a ) ( ab ) 0  (since b 2 ), we have estimation 

( ab ) ( 2a ) 0 (( 2a ) ( ab )) 0e ( t,t ) e ( t,t )  0exp (( 2a ) ( ab ))( t t )  

0

( 2a ab )
exp ( t t )

1 2a ( t )

 
   

 
 

0exp( a(b 2 )( t t )).    

 

(13) 

Since  is upper unbounded, there exists 
kt  , 2k / 2

kt e 1    ( k ). We consider  

k

1 1

0

t

k 0 0( s ) ( s )

t

I e ( t ,t ) e ( t , ( )) 
  

      

k k 0

0 0

t t t

t t ( )

exp s ( ) exp s ( s ) s 

 

   
      

    
     

    

k

0

t

k 0 0

t

exp( s( t ) s( t )) exp( s( t ) s( ( )))      

k

0

t

k k

t

exp( t sinlnt ) exp( ( )sinlog ( )) .       

It is clear that when k  is large enough then 

k

0

t

k

t

I exp( t ) exp( ( )sinlog ( )) .       

Since 2k / 2

kt e 1   , we get 2k / 2 2k / 2

0 k[e ,e 1] [t ,t ]        when k  is large enough. Hence, 

2 k / 2 1

2 k / 2

e

k

e

I exp( t ) exp( ( )sinlog ( )) .

 

 

    

 



   

In addition, by the relation between Lebesgue integration on  and  (see Theorem 5.2 in [13]), 

we get 
2 k / 2 1

2 k / 2

e

k

e

exp( t ) exp( ( )sinlog ( ))

 

 

    

 



  

2 k / 2 1

2 k / 2
k

e

k i i i

i Ie

exp( t ) exp( ( )sinlog ( ))d exp( ( a )sinlog ( a )) ( a ),

 

 

       

 

 

     

where 2k / 2 2k / 2 1

ia [e ,e ]       with i( a ) 0   for all ki I  and   is  measure on . It 

implies  
2 k / 2

2 k / 2

e 1

k

e

I exp( t ) exp( ( )sinlog( ( ))d
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2 k / 2

2 k / 2

e 1

k

e

exp( t ) exp( ( ( ))sinlog( ( ))d .

 

 

      







     

When k  is large enough again then exp( ( ( ))sinlog( ( )) exp( sinlog )            . 

Therefore, 
2 k / 2

2 k / 2

e 1

k

e

I exp( t ) exp( sinlog )d

 

 

  







   

2 k / 2

2 k / 2

e 1

2k / 2 2k / 2

k

e

exp( t ) exp( ( e 1)sinlog( e 1))d

 

 

    







       

2k / 2

k kexp( t )exp( e ) exp( t ).    

It means 

k 0 0I exp( t t ) ( when t 1)   . (14) 

From (12), (13) and the last relation we obtain 

 2 k 1 0 k 0x ( t ) x ( t )exp ( a(b 2 ) 1)( t t )    . 

By hypothesis (4), we have a(b 2 ) 1 0   , therefore 

2 k
k
lim x ( t ) .


   

It implies that the system (6) is unstable.  
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