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Abstract: In this work, utilising the linear response theory we calculate the magneto conductivity 

(MC) in graphene monolayers, subjected to a static perpendicular magnetic field. The interaction 

of Dirac fermions with optical phonon via deformation potential is taken into account at high 

temperature. The dependence of the MC on the magnetic field shows resonant peaks that describe 

transitions of electrons between Landau levels via the resonant scattering with optical phonons. 

The effect of temperature on the MC is also obtained and discussed. 
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1. Introduction

 

Magnetophonon resonance (MPR) arises from resonant phonon emission and absorption by 

electrons in semiconductors in high magnetic field [1-4]. The condition for the MPR has been obtained 

in bulk and conventional low-dimensional semiconductors as 

op cM ,                                                                                                                (1) 

where M = 1,2,3,…, op  and c  are, respectively, the optical phonon and cyclotron frequency. 

MPR provides detailed information on carrier effective mass and phonon frequency at higher 

temperatures, typically between liquid nitrogen and room temperature. Since the first discovery [5], 

graphene has attracted numerous interest because of its unique properties that make graphene a 

promising candidate for future electronics devices. Electrons in graphene can move with a very high 

speed which leads to relativistic description of their dynamics, their behavior is described by the two-

dimensional Dirac equation for massless fermions. The energy dispersion in graphene is linear near 

the Dirac points. In particular, electronic structure of graphene in magnetic field shows unusual 

behaviors. Unlike conventional low-dimensional semiconductors where electron Landau levels (LL) 

are proportional to magnetic field and equally spaced, the LLs in graphene are proportional to the 
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square root of magnetic field and their spacing depends on the indices of LLs. This unusual energy 

spectrum of electrons in graphene in magnetic field has been expected to result in many exceptional 

and fascinating physical properties, including magneto-transport properties. For example, the MPR 

condition in graphene may be fairly different from Eq. (1). In this work, utilising the linear response 

theory we calculate the magnetoconductivity (MC) in graphene monolayers subjected to a static 

perpendicular magnetic field. We only consider the scattering of electrons and optical phonons at K 

points and take account of arbitrary transitions between the energy levels. In the next section, we 

introduce basic formulae of calculation. Numerical results and discussion are presented in Sec. 3. 

Finally, concluding remarks are given briefly in Sec. 4. 

2. Basic formulation 

For a many body system, let us consider the Hamiltonian [6] 

0H H V A.F( t ),                                                                                                                      (2) 

where H0 is the largest part of H which can be diagonalized (analytically), V  is a binary-type 

interaction, assumed nondiagonal and small compared to H0, and -A.F(t) is the external field 

Hamiltonian with A being an operator and F(t) a generalized force. Based on this Hamiltonian , K. 

Van Vliet and co-workers developed a general expression for the conductivity tensor in linear 

response theory using projection operator technique of Zwanzig [7] in which the conductivity was split 

into the diagonal and nondiagonal parts. The magneto-conductivity (MC) tensor can be calculated by 

relating it to the transition probability electron as 

   
2

2d

eq eq
, ,s0

e
(0 ) n 1 n W ,

V
     

 


    



                                                                   (3) 

where V0 is the normalization volume of the system, B1 k T   with Bk  being Boltzmann constant 

and T the temperature, W   is the binary transition rate, given by the Fermi “golden rule" and 
eq

n  

is the Fermi-Dirac distribution function. For the electron-phonon interaction, the transition rate W   

takes the form 

    q qeq eq
q

W Q ,q N Q ,q 1 N ,    
      
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                                                        (4)
 

where 
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                                                               (6) 

with  Q ,q   ,  Q ,q    correspond to absorption and emission of a phonon with wave 

vector q , and energy q , respectively, and q eq
N  is the equilibrium distribution function of 

phonons. 

We now apply the above expression of the MC to a graphene sheet placed in the (x-y) plane, 

subjected to an uniform static magnetic field with strength B oriented along the z-direction. The 
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normalized wave function and the corresponding energy for a carrier (electron and hole) in the Landau 

gauge for the vector potential A = (Bx, 0) are written as [8] 

 
 

 

2 n n 1i Xy ln
n

n

S x XC
r e ,

x XL





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 
 

  

                                                                                             (7) 

n n BS n ,                                                                                                                                 (8)
 

where
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                                                                             (11) 

with n 0, 1, 2,...    being the Landau index,  nH x l  is the n-th order Hermite polynomial, x 

being the coordinate of the center of the carrier orbit, B 2 l   is the effective magnetic energy 

with 0( 3 2 )a   being the band parameter, and a = 0.246 nm being the lattice constant. The 

electronic states for a carrier are specified by the set of  n,X  . To calculate the component 
xx  of 

the MC from Eq. (3), we need following matrix elements [9] 

2

yx l k ,                                                                                                                         (12) 
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where j

mL ( u )  is an associated Laguerre polynomial, 2 2u l q 2 , 2 2 2

x yq q q  , 

 m min n , n , j n n  . The MC tensor in graphene monolayers is written as [9] 
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2
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                                                                          (16) 

where S0 is the normalization acreage of system, W   is given by [10] 

      s q qk ,k eq eq
q
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with g 2   and 
sg 2  are the valley and spin degeneracy, respectively,    g 1 cos 2    is 

the overlap integral of spinor wave functions,  Q ,q    and  Q ,q    are given by Eqs. (5) 

and (6). 

Graphene has two atoms per unit cell, so it has four optical phonon modes. Because the 

contributions of K- and  - optical phonons are equivalent, so we consider only scattering of electrons 

with K-optical phonons. For the deformation potential scattering mechanism, we have 

 
2

2 op

2

K

D
C q ,

2 L 
                                                                                                                         (18) 

where Dop is the deformation potential constant,   is the areal massdensity, 
K  is the K-optical 

phonon frequency. 

Substituting Eq. (17) into Eq. (16) and using the notation 
yn,keq

n f   , we have 
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                                                    (19) 

Inserting Eq. (15) into Eq. (19) and peforming the integral over q , we obtain the following 

expression of the transverse MC in graphene monolayers: 

 
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                                                              (20) 

The delta functions in Eq. (20)  are divergent as their arguments equals to zero. To avoid this, we 

replace them phenomenology by Lorentzians as [10] 

 
 2 2

,


 
  




                                                                                                                      (21) 

where K B KW   is the level width, 2 2 2

K op KW D 8 
 
is the dimensionless parameter 

characterizing the scattering strength. 

3. Numerical results and discussion 

We have obtained analytic expression of the transverse MC in graphene monolayers when carriers 

are scattered by K-optical phonons. The above result will now be applied to numerically investigate 

physical behavoiurs of the transverse MC. The parameters used in computational calculations are as 
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follows [10, 11]: 23

Bk 1.3807 10   J/K, a = 0.246 nm, 
0 3.03   eV, 9

opD 1.4 10   eV/cm, 

87.7 10    g/cm
2
, 

0 K 162    meV, n 4 4   , n 4 4.      

 

Figure 1. The dependence of the magnetoconductivity on the magnetic field. Here, T = 180 K. 

Figure 1 shows the dependence of the transverse MC on the magnetic field B at T = 180 K. It can 

be seen that there are 5 maximum peaks of the MC. By computational analysis, we can deduce their 

physical meanings as follows. 

- Peak (1) appears at B = 1.789 T satisfying the condition 

   B K1 2 1 4 0,                                                                                                    (22) 

it describes electron transition between LLs n = 2 and n’ = -4 accompanied by emitting an optical 

phonon of energy K , or the condition 

   B K1 4 1 2 0,                                                                                                    (23) 

describes electron transition between LLs n = 4 and n’ = -2 accompanied by emitting an optical 

phonon of energy K , or the condition 

   B K1 2 1 4 0,                                                                                                    (24) 

describes electron transition between LLs n = -2 and n’ = 4 accompanied by absorbing an optical 

phonon, or the condition 

   B K1 4 1 2 0,                                                                                                    (25) 

describes electron transition between LLs n = -4 and n’ = 2 accompanied by absorbing an optical 

phonon. 
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Figure 2. The MC as a function of the magnetic field for the transitions contributing to the resonance peak (1) in 

Figure 1. Figures a, b, c, d correspond to the possible transitions analyzed above, respectively. 

Thus, peak (1) is contributed by four transitions of electrons in which two transitions with phonon 

absorption and two others with phonon emission, as shown in Figure. 2. 

- Peak (2) located at B = 5.167 T is the contribution  of the condition 

   B K1 1 1 1 0,                                                                                                     (26) 

describing electron transition between LLs n = 1 and n’ = -1 accompanied by emitting an optical 

phonon of energy K , and the condition 

   B K1 1 1 1 0,                                                                                                     (27) 

describing electron transition between LLs n = -1 and n’ = 1 accompanied by absorbing an optical 

phonon. 

- Peak (3) appears at B = 6.856 T satisfying the condition 

  B K1 3 0 0 0,                                                                                                          (28) 

it describes electron transition between LLs n = 3 and n’ = 0 accompanied by emitting an optical 

phonon of energy K , or the condition 

   B K0 0 1 3 0,                                                                                                    (29) 
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describes electron transition between LLs n = 0 and n’ = -3 accompanied by emitting an optical 

phonon of energy 
K , or the condition 

   B K1 3 0 0 0,                                                                                                    (30) 

describes electron transition between LLs n = -3 and n’ = 0 accompanied by absorbing an optical 

phonon, or the condition 

  B K0 0 1 3 0,                                                                                                          (31) 

describes electron transition between LLs n = 0 and n’ = 3 accompanied by absorbing an optical 

phonon. 

Thus, peak (3) arises from the contributions of the above four transitions of electrons in which two 

transitions with phonon absorption and two others with phonon emission.  

- Peak (4) appears at B = 10.44 T satisfying the condition 

  B K1 2 0 0 0,                                                                                                          (32) 

it describes electron transition between LLs n = 2 and n’ = 0 accompanied by emitting an optical 

phonon of energy K , or the condition 

   B K0 0 1 2 0,                                                                                                    (33) 

describes electron transition between LLs n = 0 and n’ = -2 accompanied by emitting an optical 

phonon of energy K , or the condition 

   B K1 2 0 0 0,                                                                                                    (34) 

describes electron transition between LLs n = -2 and n’ = 0 accompanied by absorbing an optical 

phonon, or the condition 

  B K0 0 1 2 0,                                                                                                          (35) 

describes electron transition between LLs n = 0 and n’ = 2 accompanied by absorbing an optical 

phonon. 

Thus, peak (4) arises from the contributions of the above four transitions of  electrons in which 

two transitions with phonon absorption and two others with phonon emission  

- Peak (5) appears at B = 20.79 T satisfying the condition 

  B K1 1 0 0 0,                                                                                                          (36) 

it describes electron transitions between LLs n = 1 and n’ = 0 accompanied by emitting an optical 

phonon of energy K , or the condition 

   B K0 0 1 1 0,                                                                                                    (37) 

describes electron transition between LLs n = 0 and n’ = -1 accompanied by emitting an optical 

phonon of energy K , or the condition 
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   B K1 1 0 0 0,                                                                                                    (38) 

describes electron transition between LLs n = -1 and n’ = 0 accompanied by absorbing an optical 

phonon, or the condition 

  B K0 0 1 1 0,                                                                                                          (39) 

describes electron transition between LLs n = 0 and n’ = 1 accompanied by absorbing an optical 

phonon. 

Thus, peak (5) arises from the contributions of the above four transitions of  electrons in which 

two transitions with phonon absorption and two others with phonon emission. 

From the above results it can be deduced that the general condition for the maxima of the 

transverse MC is 

n n K 0,                                                                                                                              (40) 

where  n n n n BS n S n   
   ,  K  is for phonon absorption,  K  is for phonon 

emission. This condition is called the MPR condition in graphene monolayers. Also,  it is possible to 

devide electron transitions  into three types as follows:  

The principal transitions are between n = 0 and n 1, 2,...     (or n’ = 0 and n 1, 2,...   ), in this 

case the condition (40) becomes, respectively 

n B KS n 0, 
                                                                                                                   (41) 

or  

n B KS n 0.                                                                                                                       (42) 

The symmetric transitions are between n and n’ = -n , in this case the condition (40) becomes 

n B K2S n 0.                                                                                                                    (43) 

The asymmetric transitions are all other transitions,  then the condition (40) becomes 

  B Kn n 0.                                                                                                         (44) 

The above conditions for MPR in graphene monolayers are consistent with the ones obtained 

previously by Mori N. and  Ando T. [11] using Kubo formula in which the authors only considered the 

phonon absorption term in the conductivity. In this calculation, we consider both the phonon 

absorption and phonon emission. 

In Figure 4 the MC is plotted versus temperature T at different values of the magnetic field. We 

can see that the MC decreases as the temperature increases and reaches saturation when the 

temperature is very high. This can be explained by the increase of the probability of electron-phonon 

scattering with increasing the temperature, resulting in the decrease of the conductivity. This behavior 

is consistent with the temperature dependence of the conductivity in graphene obtained by S. V. 

Kryuchkov and co-workers in the work [12], in which the authors used the Boltzmann equation to 

calculate the MC and the Hall conductance for electron - optical phonon and electron – acoustic 

phonon interactions. 

 



L.T.T. Phuong et al. / VNU Journal of Science: Mathematics – Physics, Vol. 33, No. 4 (2017) 45-56 

 

53 

 

Figure 4. The magnetoconductivity verus temperature at different values of the magnetic field. 

4. Conclusions 

So far, we have calculated the transverse MC in monolayer graphene subjected to a perpendicupar 

magnetic field. The electron-optical phonon interaction is taken into account at high temperatures. The 

dependence of the transverse MC on the magnetic field shows MPR effect that arises from transitions 

of electrons between LLs via resonant scattering with optical phonons. The MPR conditions in the 

present calculation show the unsusual behaviour of Dirac fermions in graphene in comparison with the 

carriers in conventional semiconductors. Numerical results also show that the transverse MC decreases 

with increasing the  temperature and reaches saturation at high temperature. 
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Appendix 

In this appendix, we present the detailed calculation to obtain Eq. (20) from Eq. (19). Let us 

rewrite again Eq. (19) as 

   

  
     

y y

y y

y y y

y y y

2 4 2
2op

xx n,k n ,k nn2
n,k n ,k q0 0

2

0 k ,k q n n K y y

2

0 k ,k q n n K y y

2 e l D
(1 cos ) f 1 f J u

L S

N k k

1 N k k .


 

 

    

    

  

 

 

 

  

    

    



                                                  (A.1)

 
Firstly, taking the summation over yk  , we have 
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                                                        (A.2)  

Because the x and y directions are symmetric, so we also have 
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                                                      (A.3)

 
Then, we can write 
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Inserting (A.2) and (A.3) into (A.4), we have 
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                                                             (A.5)

 

Transforming the summations over q and ky  to integrals as follows 
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the expression (A.5) becomes 
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We will calculate integrals in (A.8) as follows 
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For the integral over q 
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setting
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we have 
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Using following formulae [13] 
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we arrive at 
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Finally, inserting (A.9) and (A.12) into (A.8) we obtain the explicit expression for the 

magnetoconductivity as 
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