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Abstract: The Ettingshausen coefficient (EC) in  a Rectangular quantum wire with an infinite 

potential (RQWIP)in the presence of an Electromagnetic wave (EMW) is calculated by using a 

quantum kinetic equation for electrons. Considering the case of the electron - optical phonon 

interaction, we have found the expressions of the kinetic tensors ik ik ik ik, , ,    . From the kinetic 

tensors, we have also obtained the analytical expression of the EC in the RQWIP in the presence 

of EMW as function of the frequency and the intensity of the EMW, of the temperature of system, 

of the magnetic field  and of the characteristic parameters of RQWIP. The theoretical results for 

the EC are numerically evaluated, plotted and discussed for a specific RQWIP GaAs/GaAsAL. We 

also compared received EC with those for normal bulk semiconductors and quamtum wells to 

show the difference. The Ettingshausen effect in  a RQWIP in the presence of an EMW is 

newly developed.  

Keywords: Ettingshausen effect, Quantum kinetic equation, RQWIP, Electron - phonon 

interaction, kinetic tensor. 

1. Introduction

 

Nowadays, the theoretical study of kinetic effects in low-dimensional systems is increasingly 

interested, especially on the electrical, magnetic and optical properties of the low-dimensional systems such 

as: the absorption of electromagnetic waves, the acoustomagnetoelectric effect, the Hall effect, ... These 

results show us that there are some significant differences from the bulk semiconductor that the previous 

researches studied [1-12]. Among those, the Ettingshausen effect has just been researched in bulk 

semiconductors [13] and only been studied on the theoretical basis in 2-D systems [14]. Furthermore, no 

research has been done on the Ettinghausen effect in 1-D systems such as quantum wires so far. In this 

paper, the calculation of Ettingshausen coefficient in the Rectangular quantum wire with an infinite 
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potential in the presence of magnetic field, electric field under the influence of electromagnetic wave is 

done by using the quantum kinetic equation method that brings the high accuracy and the high efficiency. 

Comparing the results obtained in  this case with in the case of the bulk semiconductors and quantum 

wires, we see some differences. To demonstrate this, we estimate numerical values for a GaAs/GaAsAl 

quantum wire.  

2. Calculation of the Ettingshausen coefficient in a Rectangular quantum wire with an infinite 

potential in the presence of an electromagnetic wave  

In a model, we consider a wire with rectangular cross section (Lx  Ly) and the length Lz. The effective 

mass of electron is denoted as m. The RQWIP is subjected to a crossed dc electric field 
1 1E (0,0,E ) and 

magnetic field B ( B,0,0 ) in the presence of a strong EMW characterized by electric field 

0E( t ) E sin( t ) (with E0 and  are the amplitude and the frequency of LR, respectively). Under these 

condition, the wave function and energy spectrum of confined electron can be written as: 

xikz
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yx x y yz

0 x L1 2 n x 2 l y
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where kz is the electron wave momentum; c

eB

m
   is the cyclotron frequenciesn;  and ‟ are the 

quantum numbers (n,l) and (n,l‟) of electron; N, N‟ are the Landau level (N=0,1,2,…). These expressions 

differ from the equivalent expressions in bulk semiconductors [14] and quantum wells [13]. 

The Hamiltonnian of the electron - optical phonon interaction system in the above RQWIP can be 

written as: 

( t ) q q q,k ,k
q,k

2 2
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Where 
,k

a


  and 
,k

a


 (
q

b  and 
q

b ) are the creation and the annihilation operators of electron (optical 

phonon); k is the electron wave momentum; q is the phonon wave vector; q are optical phonon 

frequency; qC  the electron – optical phonon interaction constant: 
2

2 o
q 2

0 0

e 1 1
|C | =

2 q V



  

 
 

 
 (here V is 

the unit normalization volume, 


 is magnetic permeability of high frequency dielectric, 
0

  is magnetic 

permeability of static dielectric; , 'I ( q )   is the electron form factor, which is determinned by [8], different 

from that in cylindrical quantum wire;  q  is the potential undirected:  
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( h  is unit vector in the direction of magnetic field). 

Through some computation steps, the quantum kinetic equation takes the form: 


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Equation (5) we put: 
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We obtain the following equations: 
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After some approximate developing and computation steps, we obtain the expression of Ettinghausen 

coefficient as follows: 
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Here B1 / ( k T )  ; x y zh 0,h 0,h 1;   L B 0 FK , ,T ,k , , ,    :is the lattice heat conductivity, the 

momentum laxation time, the temperature, the Boltzmann constant, the static dielecttric constant, the high 

frequency dielectric constant, and the Fermi level, respectively. The expressions of the kinetic tensors 

ik ik ik ik, , ,    (11-14) and of the EC (10) as well as functions of the frequency and the intensity of the 

EMW, of the temperature of system, of the magnetic field and of the characteristic parameters of RQWIP 

are different from those in bulk semiconductors and quamtum wells. It is newly developed in the quantum 

theory of Ettinghausen effect. 

3. Numerical results 

We will survey, plot and discuss the expressions for the case of a specific GaAs/GaAsAl quantum well. 

The parameters used in the calculations are as follows: 

0
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In Fig. 1, we show the dependence of the EC on the laser frequency. From the figure, we see that the 

EC in RQWIP decreased is nonliner with the frequency, however, the EC in the quantum wells increased 

with the frequency [14]. This also demonstrates its difference in bulk semiconductors [13]. 

In Fig. 2, we show the dependence of the EC on laser amplitute. We found that the EC in RQWIP 

decreased is nonliner with laser amplitude. This is similar in the case of quantum wells, however, the EC in 

the quantum wire has decreased much faster than in quantum wells and in bulk semiconductors [13,14]. 

 

 

 

Fig 1. The dependence of EC on laser 

frequency. 
Fig 2. The dependence of EC on 

laser amplitute. 
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In Fig. 3, we illustrate that the EC increase with the temperature T, however, the EC in the quantum 

wells decreased is nonliner with the frequency [14] and is different from bulk semiconductors [13].  

 

In Fig. 4, we show the dependence of the EC on Lx, Ly. It is the standard for us to evaluate the 

technology of making quantum wire, thereby choosing the best technology. 

 

 

 

 

 

 

 

 

 

Fig 4. The dependence of EC on Lx and Ly.  

 

The above results show the difference between EC in quantum wires and in bulk semiconductors, in 

quantum wells. The cause is determined by material characteristics, expressed in wave function and energy 

spectrum. 

4. Conclusions 

In this paper, we researched Ettingshausen effect in  a Rectangular quantum wire with an infinite 

potential in the presence of the magnetic. The electron - optical phonon interaction is taken into account at 

low temperatures, and the electron gas is nondegenerate. We obtain the analytical expression of 

Ettingshausen coeffection in a rectangular quantum wire. We see that the Ettingshausen coeffection in this 

case depend on some units such as: temperature, the amplitute of electromagnetic waves, the frequency of 

the radiation, phonon frequency and  the parameters of a rectangular quantum wire. Estimating numerical 

Fig 3. The dependence of EC on 

the temperature. 
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values and graph for a GaAs/GaAsAl quantum wire to see clearly the nonlinear dependence of the 

Ettingshausen coeffection on the electromagnetic wave frequency. The more the electromagnetic wave 

amplitute and the temperature increase, the more the Ettingshausen coeffection decreases. However, 

Ettingshausen coeffecient reduced immediately if laser Amplitute increase. We also compared received EC 

with those for normal bulk semiconductors to show the difference.The Ettingshausen effect in  a RQWIP in 

the presence of an EMW is newly developed. 
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