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Abstract: Theoretical models have been developed to calculate the zeta potential based on the 

solution of the linearized approximation of the Poisson-Boltzmann equation (PB). The 

approximation is only valid for the small magnitude of the surface potential. However, the surface 

potential available in published experimental data normally does not satisfy that condition. 

Therefore, the complete analytical solution to the PB equation (nonlinear equation) needs to be 

considered. In this work, the comparison between the linearized and nonlinear solutions has been 

performed. The results show that the linearized solution always overestimates the absolute value of 

the electric potential in the electric double layer as well as the zeta potential. For a small 

magnitude of the surface potential ( 25d  mV), the electric potential distribution predicted from 

the linearized solution is almost the same as that predicted from the nonlinear solution. It is also 

shown that the zeta potential computed from the linearized PB solution closely matches with that 

computed from the nonlinear solution for the fluid pH = 5 - 8 and the shear plane distance of 

2.4×10
−10

 m. Therefore, the solution of the linearized PB equation can be used to calculate the zeta 

potential under that condition. This is validated by comparing the linearized and nonlinear 

solutions with experimental data in literature.  

Keywords: Zeta potential, porous media, electric double layer, Poisson–Boltzmann equation. 

1. Introduction

 

The electrokinetic phenomena are induced by the relative motion between the fluid and the solid 

surface. In a porous medium such as rocks or soils, the electric current density, linked to the ions 

within the fluid, is coupled to the fluid flow and that coupling is called electrokinetics e.g. [1]. 

Measurement of the electrokinetics in porous media is becoming increasingly more important in 
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geophysical applications. For example, it could be used to map subsurface flow and detect 

subsurface flow patterns in oil reservoirs [e.g., 2- 6], geothermal areas and volcanoes [e.g.,7, 8, 9], 

detection of contaminant plumes [e.g., 10, 11]. It has also been proposed to use the monitoring of 

electrokinetics to detect at distance the propagation of a water front in a reservoir [e.g., 12] or to 

predict earthquakes [e.g., 13]. 

The zeta potential of a solid-liquid interface is one of the most important parameters in 

electrokinetics. Theoretical models have been developed to calculate the zeta potential based on the 

solution of the linearized approximation of the PB equation for the electric double layer [e.g., 14, 15]. 

The approximation is only valid for the small magnitude of the surface potential ( 25d mV) [16, 

17]. However, the surface potential available in published experimental data normally does not satisfy 

that condition. Therefore, a complete analytical solution to the nonlinear PB equation needs to be 

considered. Additionally, to the best of my knowledge the difference in the zeta potential calculation 

between the solutions of the linearized and nonlinear PB equation has not yet been evaluated. In this 

work, the comparison between the linearized and nonlinear solutions has been performed for silica 

surfaces because of the availability of input parameters for the model as well as experimental data in 

literature [e.g., 14, 15]. It is found that the linearized solution always overestimates the absolute value 

of the electric potential in the electric double layer (EDL) as well as the zeta potential. For a small 

magnitude of the surface potential ( 25d  mV), the linearized PB solution could be used to predict 

the electric potential distribution in the EDL instead of the more complicated nonlinear PB solution. 

The results also show that at a given electrolyte concentration, the zeta potential computed from the 

linearized PB solution closely matches with that computed from the nonlinear solution for the fluid pH 

= 5 - 8 that are normally encountered in published experimental data and the shear plane distance of 

2.4×10
−10

 m. Therefore, the solution of the nonlinear PB equation can be used to calculate the zeta 

potential under that condition. This is validated by comparing the linearized and nonlinear solutions 

with each other and with experimental data in literature. It should be noted that if the shear distance is 

taken as 2.4×10
−9

 m or larger value and the fluid pH is larger than 8, one needs to use the linearized 

PB solution to calculate the zeta potential. 

2. Theoretical background of the zeta potential 

2.1. Physical chemistry of the electric double layer 

Solid grain surfaces of the rocks immersed in aqueous systems acquire a surface electric charge, 

mainly via the dissociation of silanol groups - SiOH
0 

(where the superscript “0” means zero charge) 

and the adsorption of cations on solid surfaces. The reactions at a solid silica surface (silica is the main 

component of rocks) in contact with fluids have been well described in literature [e.g, 14, 15, 18]. The 

reactions at the silanol surfaces in contact with 1:1 electrolyte solutions are: 

SiOH
0
    >SiO

−
 + H

+
,                                                                        (1) 

for deprotonation of silanol groups 

and 

SiOH
0
 + Me

+   SiOMe
0
 + H

+
,                                                                       (2) 

for cation adsorption on silica surfaces (Me
+
 refer to monovalent cations in the electrolytes such as 

K
+ 

or Na
+
). It should be noted that further protonation of the silanol surfaces is expected only under 

extremely acidic conditions (pH < 2-3) and is not considered. Similarly, the protonation of doubly 
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coordinated groups (Si2O
0
) is not taken into account because these are normally considered inert [14, 

15, 18]. 

According to [14, 15], the disassociation constant for deprotonation of the silica surfaces is 

determined as 

0

00

)(

.

SiOH

HSiOK










,                                                            (3) 

and the binding constant for cation adsorption on the silica surfaces is determined as 

00

00

.

.










MeSiOH

HSiOMe

MeK



,                                                            (4) 

where 
0

i  is the surface site density of surface species i (sites/m
2
) and 

0

i  is the activity of an 

ionic species i at the closest approach of the mineral surface (no units).  

The total density of surface sites (
0

S ) is determined as follows 

0000

SiOMeSiOSiOHS                                                                              (5) 

The mineral surface charge density 
0

SQ  in C/m
2
 can be found by  

00 . 
SiOS eQ ,                                                                            (6) 

where e is the elementary charge. 

Due to a charged solid surface, an electric double layer (EDL) is developed at the liquid-solid 

interface when solid grains of rocks are in contact with the liquid. The EDL is made up of (1) the Stern 

layer where cations are adsorbed on the surface and are immobile due to the strong electrostatic 

attraction and (2) the diffuse layer where the number of cations exceeds the number of anions and the 

ions are mobile. The closest plane to the solid surface in the diffuse layer at which flow occurs is 

termed the shear plane and the electric potential at this plane is called the zeta potential (ζ).  

2.2. Electric potential distribution in the EDL 

Following assumptions are used in the EDL theory [e.g., 19, 20]: (1) ions in the double layer are 

considered as point charges and there are no chemical interactions between them; (2) charges on the 

solid grain surface are uniformly distributed; (3) the solid surface is a flat plate that is large relative to 

thickness of double layer and (4) the dielectric constant of the medium is the same everywhere in the 

liquid. 

In the EDL theory, the local concentrations of cations, C
+
(x) and of anions, C

−
(x) (mol m

−3
) in the 

liquid in the pore space at distance x from the solid surface are expressed as functions of the electric 

potential ψ(x). According to Boltzmann theorem [e.g., 21, 22], one has 

Tk

xeZ

b
beCxC

)(

)(



                                                                          (7) 

and  

Tk

xeZ

b
beCxC

)(

)(



                                                                                       (8) 
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where 


bC  and 


bC  are concentration of the cations and concentration of the anions, respectively at 

large distance from the solid surface where the electric potential is zero (ψ(∞) = 0), Z is the valence of 

the ions under consideration (dimensionless); kb is the Boltzmann’s constant (1.38×10
-23 

J/K), T is 

temperature (in K). 

The Poisson equation relating the electric potential, ψ(x) (in V) and volumetric charge density, ρ(x) 

(in C m
-3

) in the liquid is expressed as [e.g., 21, 22] 

0

2

2 )()(





r

x

dx

xd
                                                                                                      (9) 

where εr is the relative permittivity of the fluid (78.5 at 25
o
C for water), εo is the dielectric 

permittivity in vacuum (8.854×10
−12

 C
2
 J

−1
 m

−1
). 

For single type of ions in the liquid, ρ(x) is given by [e.g., 20] 

)()]()([)(

)()(

Tk

xeZ

Tk

xeZ

b
bb eeNeZCxCxCNeZx



 



                                                    (10) 

where bC =


bC =


bC  for symmetric electrolytes such as NaCl or CaSO4 representing number of 

ions (anion or cation) expressed in mole per unit volume (mol m
−3

), e is the elementary charge (e = 

1.6×10
−19

 C) and N is the Avogadro’s number (6.022 ×10
23 

/mol). 

Putting Eq. (10) into Eq. (9), one obtains 

)(
)(

)()(

0

2

2
Tk

xeZ

Tk

xeZ

r

b bb ee
NeZC

dx

xd









                                                                                (11) 

or 

)
)(

sinh(
2)(

0

2

2

Tk

xeZNeZC

dx

xd

br

b 




                                                                                      (12) 

Eq. (12) is known as the PB equation. The boundary conditions to be satisfied for flat solid 

surfaces are: (1) the potential at the surface x = 0, d )0(  that is called the surface potential or 

Stern potential); (2) the potential in the bulk liquid at distance x = ∞, 0)(   and 0
)(


xdx

xd
 

[e.g., 20]. 

a) Linearized solution of Poisson–Boltzmann equation 

It is seen that if 1
Tk

eZ

b

d
 ( 25d mV for Z = 1 at 25

o
 C), then 

Tk

xeZ

Tk

xeZ

bb

)(
)

)(
sinh(


  

[e.g., 16, 17, 23, 24]. Therefore, Eq. (12) linearizes as follows 

)(
2)(

0

22

2

2

x
Tk

CZNe

dx

xd

br

b 



                                                                                         (13) 

The solution to linearized PB equation satisfying the boundary conditions is given by [e.g., 25] 
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)exp()(
d

d

x
x


                                                                                                              (14) 

where d  is called Debye length given by 
b

bro
d

CZNe

Tk
222


    (Cb in mol m

−3
). If Cb is in mol L

-1
, 

then 
b

bro
d

CZNe

Tk
222000


  . 

b) Nonlinear solution of Poisson–Boltzmann equation 

The exact solution to PB equation - Eq. (12) for single type of ions has been found in both [20] 

and [26]. However, the solution presented in [20] has a more simplified form as below: 

)

)exp(1

)exp(1

ln(
2

)(

d

db

x
A

x
A

eZ

Tk
x










                                                                                      (15) 

where 

)
2

exp(1

)
2

exp(1

d

b

d

b

Tk

eZ

Tk

eZ

A









 . 

Therefore, Eq. (15) is used as the exact solution to nonlinear PB equation to calculate the zeta 

potential in this work. 

2.3. The surface potential and zeta potential 

In a theoretical model that has been well described in [e.g., 14, 15], the surface electric potential 

d  for a solid surface in contact with 1:1 electrolytes (Z = 1) is given by 


























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










b
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b

S

bMe
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brob
d

C

C

Ke

CKTNk

e

Tk w1010

2

)10(10.8
ln

3

2

)(

0

3 
                (16) 

where pH is the fluid pH and Kw is the disassociation constant of water. 

According to the definition, the zeta potential is the electric potential at the shear plane. Therefore, 

one has 







x
x)(                                                                        (17) 

where )(x  is the electric potential distribution in the EDL given by Eq (14) or Eq. (15),   is 

the shear plane distance (the distance from the solid surface to the shear plane). There is currently no 

method to evaluate the shear plane distance. There are few independent reports of the shear plane 

distance. For example, the shear plane distance   is found to be 2.4×10
−10

 m in [15] but 2.0×10
−9

 m 

in [27]. 
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3. Results and discussion 

A system of 1:1 symmetric electrolytes (e.g., NaCl, KNO3) and silica solid surfaces are considered 

for the modeling in this work because of the availability of input parameters for the model a s well 

as experimental data in literature [e.g., 14, 15]. Therefore, the valence Z  = 1 is used from Eq. (7) 

to Eq. (15).  

 

(a) d = - 0.1 V; Cb =10
-3

 mol/L 

 

(b) d = - 0.025 V; Cb =10
-3

 mol/L 

Figure 1. The variations of the electric potential with respect to distance x from the solid surface computed 

using the solutions of the linearized and nonlinear PB equation. 

3.1. The distribution of )(x  

The variation of the electric potential )(x  with respect to distance x from the solid surface 

predicted from the linearized and nonlinear solutions (Eq. (14) and Eq. (15), respectively) for two 

different values of the surface potential ( d = - 0.1 V and d = - 0.025 V) is shown in Fig. 1 

(electrolyte concentration Cb  is taken to be 10
-3 

M ). It is seen that the solution of linearized PB 
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equation overestimates the absolute value of the electric potential for d = - 0.1 V as shown in Fig. 

1(a). For the smaller absolute value of the surface potential d = - 0.025 V, the prediction from the 

nonlinear and linearized solutions is almost the same as shown in Fig. 1(b). It is inferred that the 

difference in the electric potential distribution predicted by the two solutions increases with increasing 

absolute value of the surface potential. For a small magnitude of the surface potential ( 25d  mV), 

the linearized PB solution could be used to predict the electric potential distribution in the EDL as 

expected in literature [e.g., 16, 17]. The variation of )(x  with distance x for two different electrolyte 

concentrations (Cb = 10
-2

 M and Cb = 10
-3

 M) is also shown in Fig. 2. It is seen that the deviation of the 

electric potential obtained by the nonlinear and linearized solutions is more for lower the electrolyte 

concentration. 

 

Figure 2. The variations of the electric potential with respect to distance x using the solutions of the linearized 

and nonlinear PB equation for two different electrolyte concentrations. 

3.2. The zeta potential comparison  

To evaluate the variation of the zeta potential with respect the electrolyte concentration from both 

the linearized and nonlinear solutions of the PB equation, one need to calculate the surface potential 

from Eq. (16). Input parameters that are available in [14, 15] for silica are used for Eq. (16). Namely, 

the value of the disassociation constant K(−) is taken as 10
−7.1

. The surface site density 
0

S  is taken as 

10×10
18

 site/m
2
. The disassociation constant of water Kw is taken as 9.214×10

−15
 at 25

o
C (pKw = -

log10(Kw)). The fluid pH is taken as 7. The binding constant for cation adsorption of Na
+
 on silica 

surface KMe(Na
+
) is taken as 10

−7.5
. The shear plane distance   is taken as 2.4×10

−10
 m and 2.4×10

−9
 

m for comparison.  

Fig. 3 shows the variations of the zeta potential with electrolyte concentration using the solutions 

of the linearized and nonlinear PB equation. It is found that the zeta potential in magnitude predicted 

from the linearized solution is significantly larger (up to 15%) than that predicted from the nonlinear 

solution in the studied range of electrolyte concentration for the shear plane distance of 2.4×10
−9

 m. 

However, a slight difference in the zeta potential is observed for the shear plane distance of 2.4×10
−10

 m. 
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Figure 3. The variations of the zeta potential with electrolyte concentration using the solutions 

 of the linearized and nonlinear PB equation for   = 2.4×10
−9

 m and   = 2.4×10
−10

 m. 

 

 

Figure 4. The variations of the zeta potential with fluid pH using the solutions of the linearized and nonlinear 

PB equation for   = 2.4×10
−9

 m and   = 2.4×10
−10

 m (Cb = 10
−4

 M). 

The variations of the zeta potential with fluid pH are also predicted using the linearized and 

nonlinear solutions at Cb = 10
−4

 M as shown in Fig. 4. The results show that the zeta potential in 

magnitude increases with increasing fluid pH as reported in 28. Besides that, the difference of the zeta 

potential between the linearized and nonlinear PB solutions increases with increasing fluid pH. For 

fluid pH=5 - 8 that is normally encountered in published data and   = 2.4×10
−10

 m, the values of the 

zeta potential predicted from the linearized and nonlinear solutions are almost the same. 
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(a) T = 22.6
o
C, pH = 7, KMe = 10

-7.5
, K(−) = 10

-8.4
, 

0

S  = 10×10
18

 site/m
2
 and   = 2.4×10

−10
 m  

(Experimental data obtained from Kirby and Hasselbrink, 2004 [28]) 

 

(b) T = 23
o
C, pH = 7, KMe = 10

-7.5
, K(−) = 10

-8.0
, 

0

S  = 10×10
18

 site/m
2
 and   = 2.4×10

−10
 m  

(Experimental data obtained from Li and de Bruyn, 1966 [29]). 

Figure 5. The zeta potential as a function of electrolyte concentration compared with experimental data from 

[28, 29] for silica. 

Glover et al. [15] have compared the zeta potential as a function of electrolyte concentration 

predicted from the linearized solution to published experimental data for silica. They used the input 

parameters for modeling as: (1) T = 22.6
o
C, pH = 7, KMe = 10

-7.5
, K(−) = 10

-8.4
, 

0

S  = 10×10
18

 site/m
2
 

and   = 2.4×10
−10

 m for the experimental data obtained from [28] (see Fig. 5a); (2) T = 23
o
C, pH = 

7, KMe = 10
-7.5

, K(−) = 10
-8.0

, 
0

S  = 10×10
18

 site/m
2
 and   = 2.4×10

−10
 m for the experimental data 

obtained from [29] (see Fig. 5b). The same input parameters are used in this work to compare the 
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experimental data to those predicted from the nonlinear solution (see the dashed lines in Fig. 5). It is 

seen that the theoretical results obtained from the linearized and nonlinear solutions are in very good 

agreement with each other for pH = 7 and   = 2.4×10
−10

 m as stated above. Additionally, they are 

also in agreement with the general trend in the experimentally derived zeta-potential values from [28, 

29] (see symbols).  

4. Conclusions 

The comparison between the linearized and nonlinear PB solutions has been performed for silica 

surfaces. It is found that the linearized solution always overestimates the absolute value of the electric 

potential in the EDL as well as the zeta potential. For a small magnitude of the surface potential 

( 25d  mV), the linearized PB solution could be used to predict the electric potential distribution 

in the EDL instead of the more complicated nonlinear PB solution. It is also shown that the degree of 

deviation between the linearized and nonlinear solution in determining the zeta potential strongly 

depends on electrolyte concentration, fluid pH and shear plane distance. At a given electrolyte 

concentration, the zeta potential computed from the linearized PB solution closely matches with that 

computed from the nonlinear solution for the fluid pH = 5 - 8 that is normally encountered in 

published experimental data and the shear plane distance of 2.4×10
−10

 m. Therefore, the solution of 

linearized PB equation can be used to calculate the zeta potential under that condition. This is 

validated by comparing the linearized and nonlinear solutions with experimental data in literature. In 

particularly, if the shear distance is taken as 2.4×10
−9

 m and the fluid pH is larger than 8, the nonlinear 

PB solution needs to be taken into account to calculate the zeta potential. 
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