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1. Introduction0F

∗ 

Our focus in the present paper is on the stability analysis of linear homogeneous, constant 
coefficients delay differential-algebraic equations (DDAEs) of the following form 

( ) ( ) ( ) [, , )0 ,E x t A x t B x t for all tτ= + − ∈ ∞                                                                         (1) 

where ,, , , :[ , ) , 0n n nE A B x τ τ∈ − ∞ → >   is a constant delay. DDAEs of the form (1) can be 
considered as a general combination of two important classes of dynamical systems, namely differential-
algebraic equations (DAEs) 

( ) ( ) [ ), 0, ,E x t A x t for all t= ∈ ∞                                                                                                (2) 
where the matrix E is allowed to be singular (det E = 0), and delay-differential equations (DDEs) 

( ) ( ) ( ) [ ), 0, ,x t A x t B x t for all tτ= + − ∈ ∞                                                                                (3) 

_______ 
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Due to the presence of both differential and difference operators, as well as the algebraic constraints, 
the study for DDAEs is much more complicated than that for standard DDEs or DAEs. The dynamics 
of DDAEs, therefore, as been strongly enriched, and many interesting properties, which occur neither 
for DAEs nor for DDEs, have been observed [1-4]. Due to these reasons, recently more and more 
attention has been devoted to DDAEs, [3-9]. One of the most important research topics in the qualitative 
theory of DDAE systems is the stability analysis, which has attracted many researches in recent years, 
[2, 5-7, 10]. It is well known, that for DDEs of the form (3), stability properties of the solution are 
closely related to spectral conditions of the matrix triple (I,A,B) , see [11]. From the DAE side, not 
only the stability of (2) depends on spectral conditions of the matrix pencil E Aλ −  but also the 
solvability is connected to the regularity of this pencil. Consequently, the stability of DDAEs are usually 
discussed under the regularity assumption of this pencil. Furthermore, one very important characteristic 
of DDAEs, namely index, has been underestimated in most of previous researches about the stability of 
DDAEs. The reason for this is due to two following facts: i) For DAE systems (without delay) of the 
form (2), an index does not affect the stability of the null solution. ii) Most of the considered DDAE 
systems, so far, are of index 1, and also in this case, the stability is not influenced by an index. However, 
if an index of a DDAE is bigger than 1 then classical results on stability fail for DDAEs, see [2]. In fact, 
[2] is the only paper that the author aware of in the study of stability analysis for DDAE systems, whose 
indices are bigger than one. This paper aims to make some contribution to this research gap.  

The short outline of this work is as follows. After some notations and auxiliary lemmas, in Section 
2 we recall classical concept of (Lyapunov) exponential stability and its disadvantage, in order to 
motivate the weak exponential stability (w.e.s) concept. We also recall some important results about the 
stability and w.e.s for DDAE systems in some recent researches [2], [10]. Then, in Section 3 we extend 
the results in [10] for some bigger classes of DDAE systems. Finally, in Section 4 some conclusion and 
open questions are given. 

In the following we denote by 0( )   the set of natural numbers (including 0), by ( )   the set 

of real (complex) numbers and : { | Re( ) 0}λ λ− = ∈ <  . By   we denote a norm in n
  , by ,n n

  

the set of real matrices of size n by n and by ( )nI I  the identity matrix (of size n by n). As usual (j)x  is 

the j-th derivative of a function x . For 0 p≤ ≤ ∞ , the set ([ ,0], )p nC τ−  denotes the space of p-times 
continuously differentiable functions from [ ,0]τ−  to n

 . These spaces are equipped with the norm 

defined by (i)

[ ,0]0
: sup (t)p

p

C
ti τ

ϕ ϕ
∈ −=

=∑  to form a Banach space. For p = 0, we adopt the notation 

([ ,0], )nC τ−   with the norm 0:
C∞

=  . Furthermore, let the set 

(i)

0
([ ,0], ) : { ([ ,0], ) |supsup (t) }n n

b
i t

C Cτ ϕ τ ϕ∞ ∞

≥
− = ∈ − < ∞   

be equipped with the norm (i)

0 [ ,0]
: sup sup (t)

bC
i t τ

ϕ ϕ∞

≥ ∈ −
=  to form the Banach space. For a given and 

at most countable set [0, )D ⊂ ∞ , by ([0, ), )p n
pwC ∞   we define the set of all p-times continuously 

differentiable at all except points belong to D. For a function ([0, ), )p n
pwx C∈ ∞  , we adopt the notation 

(i)

0
: (t)  [0, ) \ D.p

pw

p

C
i

for all tx x
=

∈= ∞∑   
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To achieve uniqueness of solutions, analogous to the theory of DDEs, for DDAEs of the form (1) 
one typically has to prescribe an initial function, which takes the form  

[ ,0]| :[ ,0] nx τ ϕ τ− = − →  .                                                                                                         (4) 

Within this paper, we use the concept of a piecewise differentiable solution, i.e. x is continuous and 
x is continuously differentiable on [ )0,∞ except at the points belong to the set 0{i | i }D τ= ∈ . 
Notice that, like DAEs, DDAEs are not solvable for arbitrary initial conditions, but they have to obey 
certain consistency conditions.  

Definition 1 An initial function ϕ  is called consistent with (1) if the associated initial value problem 
(IVP) (1), (4) has at least one solution. System (1) is called solvable (resp. regular) if for every consistent 
initial function ϕ , the associated IVP (1), (4) has a solution (resp. has a unique solution). 

Definition 2 Consider the DDAE (1). The matrix triple (E,A,B)  is called regular if the two 
variable polynomial ( , ) det( E A B)P λ ω λ ω= − − is not identically zero. If, in addition, 0B =  we say 

that the matrix pair ( ),E A  (or the pencil E Aλ − ) is regular. The sets 

(E,A,B) : { |det( E A e B) 0}ωτσ λ λ −= ∈ − − = , (E, A, B) : \ (E, A, B),ρ σ=    
are called the spectrum and the resolvent set of (1), respectively. 

In order to study DDAEs, strongly equivalent transformations are proposed as follows. 

Definition 3 Two triples of matrices 1 1 1(E ,A ,B )  and 2 2 2(E ,A ,B )  in ,m n
  are called strongly 

equivalent if there exist nonsingular matrices m,mS ∈  and n,nT ∈  such that 

2 2 2 1 1 1(E , A , B ) (SE T,SA T,SB T).=  If this is the case, we write 2 2 2 1 1 1(E ,A ,B ) (E ,A ,B ) . 

Making use of strongly equivalent transformations, we can scale system (1) and change the variable 
as x Ty=  to obtain a new system of the form 

(t) y(t) y(t ),SET y SAT SBT τ= + −  for all [0, )t∈ ∞ . 

We also note that the polynomial ( , )P λ ω , the spectrum (E,A,B)σ  and the resolvent (E,A,B)ρ  
are preserved under strongly equivalent transformations. Furthermore, as shown in [10], the DDAE (1) 
is uniquely solvable only if the matrix triple (E,A,B)  is regular.  

Lemma 1 (Kronecker-Weierstrass canonical form [12]) Consider the matrix pair , 2(E,A) ( )n n∈    
and assume that it is regular. Then, there exist nonsingular matrices S, T such that  

0 0
, ,

0 0
I J

SET SAT
N I

   
= =   
   

  

where N is nilpotent with the nilpoltency index (N)ν . Furthermore, one of the block row, and hence, 
the corresponding block column may not be present. 

2. Stability analysis of DDAEs 

In this section, we study the stability analysis of (1). As usual, we assume that the considered system 
is regular, i. e., for any consistent initial function ϕ , there exists a unique solution x(t). In comparison 
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with DDEs, to introduce a new concept of exponential stability for the DDAE (1), the first and most 
natural idea would be adding a consistency assumption on an initial function ϕ , see e.g. [7]. We 
rephrase it in the next definition. 

Definition 4 The null solution x = 0 of the DDAE (1) is called exponentially stable if there exist 
positive constants δ  and γ  such that for any consistent initial function ([ ,0], )nCϕ τ∈ −  , the 
solution (t, )x x ϕ=  of the corresponding IVP to (1) satisfies 

(t) , 0.tx e for all tγδ ϕ−
∞

≤ ≥   

Notice that, for linear, homogeneous DDAEs, the exponential stability of the null solution and the 
one of an arbitrary solution are equivalent. Therefore, one can consider it as the exponential stability of 
the DDAE itself. For nonlinear systems, unfortunately, this does not hold true. Furthermore, one can 
directly see, that the stability of the DDAE (1) is preserved under strongly equivalent transformations. 
For the exponential stability of DDAEs, let us recall two important results presented in [11] and [2]. 

Proposition 1 ([11]) Consider a linear homogeneous DDE of the form 
( ) ( ) ( ) [ ), , .0x t Ax t Bx t for all tτ= + − ∈ ∞  

Then it is exponentially stable if and only if (I,A,B)σ −⊂  . 

Proposition 2 ([2]) If the DDAE (1) is strongly equivalent to the so-called strangeness-free 
formulation 

1 1 1(t) (t) (t ) [ ),0,
0 0 0

,
E A B

for all tx x x τ
     

= + −     
 

∈
  

∞


   

where 1

2

E
A
 
 
 

 is nonsingular, then it is exponentially stable if and only if (E,A,B)σ −⊂  . 

Clearly, from the strangeness-free form (5), we see that (t)x  depends continuously on (t )x τ− . 
However, inherited from DAE theory, the solution x(t) usually depends not only on (t )x τ− but also on 

its derivatives ( )(t ),..., (t ),x x µτ τ− −  for some µ∈ , which is called the strangeness-index of system 
(1). Therefore, Proposition 2 is no longer valid for general high-index DDAEs. This interesting effect 
has been observed in [2], as demonstrated in the following example. 

Example 1 Consider the following DDAE on the time interval [0, )I = ∞ . 

  

1 1 1

2 2 2

3 3 3

4 4 4

0 0 1 1(t) (t) (t )1 0 0 0 1 0 0 0
0 0 0 0(t) (t) (t )0 0 1 0 0 1 0 0
0 0 0 0(t) (t) (t )0 0 0 1 0 0 1 0
1(t) (t) (t )0 0 0 0 0 0 0 1 0 0 0
2

x x x
x x x
x x x
x x x

τ
τ
τ
τ

  −−                     −        = +           −           −−          











                  (6) 

From the equations of system (6), we can directly obtain a new system    

1 1 1 1
1(t) (t) ( (t 2 ) (t 2 )),
2

x x x xτ τ= − + − + −                                                                                   (7a) 



H. Phi / VNU Journal of Science: Mathematics – Physics, Vol. 34, No. 2 (2018) 52-64 

 

56 

  2 10 (t) (t ) / 2,x x τ= − −                                                                                                             (7b) 

3 10 (t) (t ) / 2,x x τ= − −                                                                                                                (7c) 

4 10 (t) (t ) / 2.x x τ= − −                                                                                                                (7d) 

Clearly, equations (7b), (7c) imply that system (6) is unstable in the classical sense, since on the 
interval [ ]0,τ  we have 2 1(t) (t ) / 2,x ϕ τ= − and  3 1(t) (t ) / 2.x ϕ τ= − Consequently, system (6) is not 
exponentially stable. Nevertheless, one can directly verify that the spectrum (E,A,B)σ  is  

(E,A,B) { 1} {(ln 2+2k i)/2 ,  k } C ,σ π τ −= − ∪ ∈ ⊂  which would suggest the completely wrong 
prediction. 

Besides that, the existence of a continuous solution x  is only obtained when an initial function 
belongs to the space 2 ([ ,0], )nC τ−   of two times continuously differentiable functions. If this is the 
case, the neutral DDE (7a) is exponentially stable whenever the set of initial function is restricted to the 
Banach space 1

1( ([ ,0], ), )n
C

C τ−   .  Furthermore, if the initial function  ϕ  is in the class 3C , then 

the solution's component 1x  also belongs to the class 3C . Under this smoothness assumption, taking 
the second derivative of (7a) and making use of (7b), we obtain 

2 2 2 2
1(t) (t) ( (t 2 ) (t 2 )), for all t 0.
2

x x x xτ τ+ = − + − ≥   

This equation also guarantees the exponential stability of the component 2x  as long as the initial 

condition 1
2 [- ,0]|x Cτ ∈ , which clearly holds since 3

2 Cϕ ∈ . Similarly, we have the exponential stability 

of the component 3x . 

Example 1 have shown, that the spectral location will only give a right prediction to the behaviour 
of the solution when the initial function belongs to a suitable function space. Therefore, it raises two 
important questions. Firstly, for which type of DDAEs, the condition (E,A,B)σ −⊂  still implies the 
exponential stability of the system. Secondly, for DDAEs of high-index, how to generalize the stability 
concept is such a way that systems like (6) are still (exponentially) stable. In the rest of this section we 
will partially answer these questions. 

Definition 5 The homogeneous DDAE (1) is called non-advanced (or impulse-free) if for consistent 
initial function ([ ,0], )nCϕ τ∈ −  , there exists a unique solution x to the IVP (1), (4). 

The following lemma, taken from [4], gives a strangeness-free formulation for DDAEs. 
Lemma 2 Consider the DDAE (1). Furthermore, assume that the IVP (1), (4) has a unique solution 

for every consistent initial function ([ ,0], )nCϕ τ∈ −  . Moreover, assume that the DDAE (1) is non-
advanced. Then (1) can be transformed to the strangeness-free formulation (5). 

Combining Proposition 2 and Lemma 2, we obtain the following result, which characterizes the 
exponential stability of the DDAE (1). 

Proposition 3 Consider the linear, homogeneous DDAE (1). Then, (1) is exponentially stable if and 
only if the following assertions hold. 

i) The DDAE (1) is non-advanced. 



H. Phi / VNU Journal of Science: Mathematics – Physics, Vol. 34, No. 2 (2018) 52-64 57 

ii) The spectrum (E, A, B)σ  lies on the open left half plane. 
Now let us move to the second question mentioned above. Example 1 motivates a new concept of 

exponential stability for DDAE.  

Definition 6 The null solution 0x =  of the DDAE (1) is called pC -weakly exponentially stable 
(w.e.s.) if there exist an integer 0 p≤ ≤ ∞ and positive constants δ  and γ  such that for any consistent 
initial function ([ ,0], )p nCϕ τ∈ −  , the solution (t, )x x ϕ=  of the corresponding IVP to (1) satisfies 

(t) , 0.p
t

C
x e for all tγδ ϕ−≤ ≥  

Here γ   is called the decay rate of x(t). The minimum 0p∈  such that the DDAE (1) is pC -w.e.s 
is called the D-perturbation index of the DDAE (1). 

Notice that the (classical) exponential stability is exactly 0C -w.e.s.. Furthermore, even though pC
-w.e.s. has been considered for ODEs and PDEs as well, till now we are not aware of any reference for 
DDAEs. 

Remark 1 i) For any 0p q≤ ∈  and any ([ ,0], )q nCϕ τ∈ −  , due to the estimation 

p qC C
ϕ ϕ≤  

we see that if the null solution is pC -w.e.s. then it is qC -w.e.s.. We, however, notice that the space 
of consistent initial functions, while considering the norm qC

 , is strictly reduced, since 

([ ,0], ) ([ ,0], )q n p nC Cτ τ− −  . 
ii) The D-perturbation index proposed in Definition 6 is motivated from the concept of perturbation 

index of DAEs (without delay), which has been proposed and intensively studied, for details see [9] and 
the references therein. The relation between these indices will be the topic for future research. 

Clearly, system (6) fits perfectly into this case, since the solution x(t) satisfies the estimation 

1 1
ln 2/2 t

C C
x x e τ ϕ−≤ ≤ . However, except for the recent research [10], till now we have not 

found any reference on characterizations of pC -w.e.s. systems. In the following propositions we recall 
two major results in [10]. 

Proposition 4 Suppose that , 3(E,A,B) ( )n n∈   is a commutative triple, i.e., any two out of these 
three matrices commute. Then, there exists a nonsingular matrix U such that 

1 1 1

1 1

22

33

444

(UEU , UAU , UBU )
0 0 00 0 0 0 0 0

0 0 00 0 00 0 0( , , )0 0 00 0 00 0 0
0 0 00 0 00 0 0

E

AE

BAE

BAE

AJ B
BJN

JNN
NNN

− − −

     
     =      
        

                            (8) 

where EJ , AJ , BJ  are nonsingular, 2
EN , 3

EN , 4 3 4 4, , ,E A A BN N N N are nilpotent. Moreover, if the 
matrix triple (E,A,B)  is regular then the last block row and the last block column are not present. 

Proposition 5 Assume that the DDAE (1) is regular. Moreover, suppose that the matrix triple 
(E, A, B)  is commutative. Then the following assertions hold. 
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i) The solution is exponentially stable if (E,A,B)σ −⊂  , and the matrix 2
EN  in the equation (8) 

is identically 0. 

ii) The solution is 1Cζ − -w.e.s. if (E, A,B)σ −⊂  , where ζ  is the nilpotency index of 2
EN , and 2

EN  
is constructed as in (8). Consequently, the D-perturbation index of the DDAE (1) is at most 1.ζ −  

3. Stability analysis of DDAEs with non-commutative matrix coeficients 

Within this section we aim to study the weak exponential stability of a broader class of systems than 
those mentioned in Proposition 5. We will show that the null solution to (1) is still w.e.s whenever the 
spectrum satisfies the condition (E,A,B)σ −⊂  , and the matrix coeficients are either weakly 
triangularizable or partially triangularizable. Let us begin with some definition. 

Definition 7 a) The triple , 3(E,A,B) ( )n n∈   are called simultaneously triangularizable if there 
exist a nonsingular matrix S such that 1 1 1SES , AS , BSS S− − −  are upper triangular matrices. 

b) The triple , 3(E,A,B) ( )n n∈  are called weakly triangularizable if there exist nonsingular 
matrices S, T such that , ,SET SAT SBT  are upper triangular matrices. 

Simultaneously triangularizable matrices have been intensively studied, for details see the 
monograph by Radjavi and Rosenthal [14] and the references therein. This class of systems is much 
broader than the class of commutative matrices, see Chapter 1, [14]. However, until now there are not 
many results on weakly triangularizable matrices. The following lemma gives us a necessary and sscient 
condition for the weak- and simultaneous- triangularizability of three matrices E, A, B. 

Lemma 3 Consider three matrices , 3(E,A,B) ( )n n∈   associated with the DDAE (1). Then, the 
triple (E,A,B)  is weakly triangularizable if and only if there exists a nonsingular matrix X such that 
all three matrices , ,AXB BXA AXC CXA BXC CXB− − −  are nilpotent. Furthermore, if nX I=  then 
E, A, B are simultaneously triangularizable. 

Proof  The second claim of this proposition is taken from Theorem 1.3.2 [14]. The proof of the first 
claim can be directly obtained by using the similar arguments and by taking X = TS, where the matrices 
S and T are mentioned in Definition 7. 

Now without loss of generality we assume that the matrices E, A, B are already in the upper 
triangular form. Thus, system (1) becomes  

11 11 11

22 22 22

* * * * * *
* * *

(t) (t) (t ) ,

jj jj jj

E A B
E A B

x x x

E A B

τ

     
     
     = + −
     
     
          

  

  



     

              (9) 

where the matrix ,  1,...,  ,iiE i j=  are upper triangular, and for each of them, all of its elements on 
the main diagonal are simultaneously zero or nonzero. We notice that the sizes of three matrices in each 
triple ( ), ,ii ii iiE A B  must be equal. Nevertheless, the sizes of different triples may be different. To 
analyze the stability of (9), by suitably scaling the system, in fact we only need to take care of four 
typical cases as follows. 
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1 * * * * *
( ) ( , , )

1
, ,

* *
ii ii iiE A B

     
     =      
          

  

                                                                (10a) 

  
0 * 1 * * *

( ) ( , , )
0

, ,
1 *

ii ii iiE A B
     
     =      
          

  

                                                              (10b) 

0 * 0 * 1 *
( ) ( , , )

0
, ,

0 1
ii ii iiE A B

     
     =      
          

  

                                                               (10c) 

   
0 * 0 * 0 *

( ) ( , , )
0

, ,
0 0

ii ii iiE A B
     
     =      
          

  

                                                           (10d) 

Notice that blocks of the form (10d) could not occur in (9), due to the unique solvability of the 
DDAE (1). The following two lemmata will be very useful for our study later. 

Lemma 4 Consider the corresponding IVP for the DDE 
, 0,( ) ( ) ( ) f(t) [ ),tx Ax t Bx t for all tτ += + − ∈ ∞                                                                     (11) 

and assume that the spectrum (E,A,B)σ −⊂   and for some 0p∈ , the initial function 

([ ,0], )p nCϕ τ∈ −  and ([ ,0], )p n
pwf C τ∈ −  . Furthermore, assume that f decays exponentially in 

the norm p
pwC

 , i. e. , f(t) , [0, ) \ Dp
pw

t
C

Ce for all tγ−≤ ∈ ∞ , where , 0C γ >  are two positive 

constants. Then, 1([ ,0], )p n
pwx C τ+∈ −  and it also decays exponentially in the p

pwC
 -norm, i.e. 

x(t) tCe γ ϕ−
∞

≤   for some constant  C  and for all [0, ) \ Dt∈ ∞ . 

Proof  To keep the brevity of this article, we will omit the detailed proof, which can be found in 
[15]. 

Lemma 5  Consider the corresponding IVP for the scalar difference equation 
( ) ( ) f(t) [ ).0 , 0,x t bx t for all tτ= + − ∈ ∞+                                                                              (12) 

Moreover, assume that 1b <  and for some 0p∈ , the initial function ([ ,0], )p nCϕ τ∈ −  and 

([ ,0], )p n
pwf C τ∈ −  . Furthermore, assume that f  decays exponentially in the norm p

pwC
 , i. e. , 

1f(t) , [0, ) \ Dp
pw

t
C

Ce for all tγ−≤ ∈ ∞ , where 1, 0C γ >  are two positive constants.  

Then, ([ ,0], )p n
pwx C τ∈ −  and it also decays exponentially in the p

pwC
 -norm, i.e. 

x(t) tCe γ ϕ−
∞

≤   for some positive constants ,C γ  and for all [0, ) \ Dt∈ ∞ . 
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Proof  Let  1
ln | b |min{ , }γ γ
τ

= − , we see that f(t) , [0, ) \ Dp
pw

t
C

Ce for all tγ−≤ ∈ ∞ .  

By simple induction, we obtain the solution ( )x t  as 

[ ] [ ]
[ ]/

/ 1

0
( ) b (t / ) (t i ) , [0, ) \ D,

t
t i

i
t f b for all tx t

τ
τ ϕ τ τ τ τ+

=

= − − + − ∈ ∞∑  

and hence, we have the following estimation for all [0, ) \ Dt∈ ∞ . 

[ ]
[ ]/

/ 1 ( )

0
( ) ,p

t
t it i

C
i

b Ce bx t
τ

τ γ τϕ+ − −

=

≤ + ∑  

[ ]
[ ]/

/ 1 ( ln|b|)

0
,p

t
t t i

C
i

b Ce e
τ

τ γ γτϕ+ − +

=

≤ + ∑  

[ ]/
/ ( ln|b|)

0
, (since 1),p

t
t t i

C
i

b Ce e b
τ

τ γ γτϕ − +

=

≤ + <∑  

ln|b| , (since ln | b | 0) ,
1p

t t
C

te Ce
e

γ γ
γ τϕ γ τ− −

+≤ + + ≤
−

 

which implies the pC -exponential decay of the function x  for all [0, ) \ D.t∈ ∞  
   To illustrate our scheme to analyze the stability of the DDAE (1), we consider the following 

example, where all three cases (10a)-(10c) occur and they are of size 2 by 2. 
Example 2 Consider the following DDAE on the time interval [0, )I = ∞ . 

112 13 14 15 16 11 12 13 14 15 16

223 24 25 26 22 23 24 25 26

334 35 36 34 35 36

445 45 45 45

556 56

6

(t)1
(t)1
(t)0 1
(t)0 1
(t)0 0
(t)0 0

x xe e e e e a a a a a a
xe e e e a a a a a
xe e e a a a
xe e a a
xe e
x

    
    
    
    

=    
    
    
    
     













1

2

3

4

5

6

(t)
(t)
(t)
(t)
(t)
(t)

x
x
x
x
x

 
 
 
 
 
 
 
 
  

  

                                                        

11 12 13 14 15 16 1

22 23 24 25 26 2

33 34 35 36 3

44 45 45 4

56 5

6

(t 1)
(t 1)
(t 1) .
(t 1)

1 (t 1)
1 (t 1)

b b b b b b x
b b b b b x

b b b b x
b b b x

b x
x

   −  
 − 
   − +  
 − 
   −  
   − 

                 (13) 

We will prove that if the spectrum (E,A,B)σ −⊂  , then system (13) is w.e.s. 

First we rewrite system (13) as follows. 
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1 11 12 1 11 12 1 112

2 22 2 22 2 2

(t) (t) (t 1)1
,

(t) (t) (t 1)1
x a a x b b x fe
x a x b x f

−            
= + +             −             





                                 (14a) 

1 1 33 34 1 334 34

2 2 44 2 4

(t) (t) (t 1)0 1
,

(t) (t) (t 1)0 1
x x b b x fe a
x x b x f

−            
= + +             −            





                                   (14b) 

51 1 156 56 56

62 2 2

(t) (t) (t 1)0 0 1
,

(t) (t) (t 1)0 0 1
fx x xe a b
fx x x

−            
= + +             −            





                                     (14c) 

where the inhomogeneities , 1,...,6,if i =  are multi-linear functions satisfies the following 
dependencies 

1 1 3 6 3 6 3 6(x (t),..., x (t), x (t),..., x (t), x (t 1),..., x (t 1)),f f= − −    

2 2 3 6 3 6 3 6(x (t),..., x (t), x (t),..., x (t), x (t 1),..., x (t 1)),f f= − −   

3 3 5 6 5 6 5 6(x (t), x (t), x (t), x (t), x (t 1), x (t 1)),f f= − −   

4 4 5 6 5 6 5 6(x (t), x (t), x (t), x (t), x (t 1), x (t 1)),f f= − −   

5 6 0.f f= =   

Let us partition the initial function correspondingly, as 1 2 3 4 5 6 .
TT T T T T Tϕ ϕ ϕ ϕ ϕ ϕ ϕ =     

Even though in this example 5 6 0f f= = , in general, where more than three block equations are 

present, they would be multi-linear functions in the space ([ ,0], )p n
pwC τ−  for some 0p∈ , and they 

satisfy the exponential decay estimation for some positive constants 1,C γ , i. e., 

  1f(t) , [0, ) \ D.p
pw

t
C

Ce for all tγ−≤ ∈ ∞  

Thus, due to Lemma 5, we have that 
( 1)

6 6 6x (t) , [0, ) \ D.p p
pw

t
C C

C e for all tγ ϕ− +≤ ∈ ∞  

From the first equation of (14c), we have that 

5 5 56 6 56 6 56 60 x (t 1) ( x (t) x (t) b x (t 1)), [0, ) \ D.f e a for all t= − + − + + − ∈ ∞   

Due to the trivial observation that 6x  decays exponentially in the norm p
pwC

 follows that 6x  also 

decays exponentially, but in the norm 1p
pwC − , we see that there exists a constant 5C  such that 

1 15 5 5x (t) , [0, ) \ D.p p
pw

t
C C

C e for all tγ ϕ− −
−≤ ∈ ∞  

Consequently, due to their definition, both 3f  and 4f  decay exponentially with the same rate  in the  

2p
pwC − -norm. Now we proceed consecutively with two equations of (14b), then Lemma 5 follows 

that 3x  (resp. 4x ) decays exponentially in the 2p
pwC − -norm (resp. 3p

pwC − -norm). Finally, applying 
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Lemma 4, we see that the vector-valued function 1

2

(t)
(t)

x
x
 
 
 

 also decays exponentially in the 3p
pwC − -

norm. Due to Remark 1 i), we see that all the components of x(t) decays exponentially in the 3p
pwC − -

norm, and hence, x(t) is pC -w.e.s. for any 3p ≥ . Consequently, in general, the D-perturbation index 
of (13) is at most 3. 

Using the same argument, we obtain the following theorem, which completely characterize the w.e.s 
to DDAE systems with weakly triangularizable matrix coeficients. 

Theorem 1  Assume that the DDAE (1) is regular. Moreover, suppose that the matrix triple 
(E, A, B)  is weakly triangularizable. Then, (1) is 1nC − -w.e.s. if (E,A,B)σ −⊂  . The D-perturbation 
index of (1), therefore, is at most 1n − . 

Proof  The proof is obtained by considering consecutively the scalar equations from the bottom up 
to the top and making use of Lemmata 4, 5 as in Example 2. We will omit the details here for the brevity 
of this work. 

To illustrate our result let us consider Example 3.6 in [2]. 
Example 3 Consider the following DDAE on the time interval [0, )I = ∞ . 

  

1 1 1

2 2 2

3 3 3

4 4 4

(t) (t) (t )1 0 0 0 1 0 0 0 0 0 0 1
(t) (t) (t )0 0 1 0 0 2 0 0 0 1 0 0
(t) (t) (t )0 0 0 1 0 0 2 0 0 0 1 0
(t) (t) (t )0 0 0 0 0 0 0 2 0 0 0 1

x x x
x x x
x x x
x x x

τ
τ
τ
τ

−−          
           −          = +
           −
           −          









.                    (15) 

We can directly compute the spectrum, which is 
(E,A,B) { 1} {(ln 2+2k i)/2 ,  k } C ,σ π τ −= − ∪ ∈ ⊂   

which lies entirely on the open left half plane. As observed in [4], this DDAE is unstable in the 
classical sense. However, since all matrix coeficients are already in the upper triangular form, Theorem 
1 implies that this DDAE is 3C -w.e.s. 

Remark 2 It should be noted that, Theorem 1 only gives the upper bound for the D-perturbation index 
of (1). For example, the DDAE (13) has D-perturbation index 3≤ , even though its size is 6 by 6. 

In many applications, for example [2, 7, 8], the matrix pair ( ),E A  is regular. This fact suggests us 
to make use of the Kronecker-Weierstrass canonical form in Lemma 1 to the matrix pair (E,A)  and then, 
to use strongly equivalent transformations in order to bring the DDAE (1) into the following form 

   1 21 1 1

3 42 2 2

(t) (t) (t )0 0
.

(t) (t) (t )0 0
B Bx x xI J
B Bx x xN I

τ
τ

−         
= +           −         





                                                 (16) 

Here we notice that the matrix N is nilpotent with the nilpoltency index (N)ν . We propose the 
concept of partial triangularizability in the next definition. 

Definition 8  Consider the DDAE (1) and assume that the matrix pair (E, A)  is regular, so that one 
can bring (1) to the form (16) using strongly equivalent transformation. The triple (E,A,B)  is called 
partially triangularizable if the following conditions hold. 
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i) The identity 3 =0B  holds true. 

ii) The matrices 4,N B are simultaneously triangularizable. 

Notice that the triple (E,A,B)  is partial triangularizable if and only if 3 =0B and the matrix triple 

4(N, ,B )I  is simultaneously triangularizable. Thus, Theorem 1 can be applied to the second block row 
equation of (16), which leads us to the following corollary. 

Corollary 1 Consider the DDAE (1) and assume that the matrix pair (E,A) is regular, so that one 
can bring (1) to the form (16) using strongly equivalent transformations. Furthermore, assume that the 
triple (E, A, B)  is partially triangularizable. If (E,A,B)σ −⊂  , then (1) is (N) 1Cν − -w.e.s.. 

Proof  First we apply Theorem 1 to the second block row equation of (16), which is 

2 2 4(t) (t) B (t )Nx x x τ= + − .  

Thus, 2x  is (N) 1Cν − -w.e.s. Then Lemma 4 applied to the DDE 

1 1 1 1 2 2(t) (t) B (t ) B (t ),x Jx x xτ τ= + − + −   
gives us the desire result. 
To illustrate this result let us consider again Example 3.6 in [2]. 
Example 4 Consider the following DDAE on the time interval [0, )I = ∞ . 

1 1 1

2 2 2

3 3 3

4 4 4

(t) (t) (t )1 0 0 0 1 0 0 0 0 0 0 1
(t) (t) (t )0 0 1 0 0 2 0 0 0 1 0 0
(t) (t) (t )0 0 0 1 0 0 2 0 0 0 1 0
(t) (t) (t )0 0 0 0 0 0 0 2 0 0 0 1

x x x
x x x
x x x
x x x

τ
τ
τ
τ

−−          
           −          = +
           −
           −          









.                     (17) 

Corollary 1 applied to this DDAE turns out that this DDAE is 2C -w.e.s.. Thus, the D-perturbation 
index of (17) is upper bounded by 2. This is a better bound than the one provided by Theorem 1, while 
Proposition 5 could not be applied, since three matrix coeficients in system (17) do not commute. 

4 Conclusion and outlooks 
In this paper, we have extended the recent stability result in [10] to a broader class of linear delay 

differential-algebraic equations (DDAEs). Weak exponential stability is characterized in term of spectral 
conditions for systems whose matrix coeficients are weakly-, simultaneously- or partially 
triangularizable. We notice that the Kronecker-Weierstrass canonical form, up to now, is not stably 
computed, and hence, another decompositions for matrix pairs, for example, QZ decomposition, could 
be used to generalize the concept of partial triangularizability. The second research direction is to 
investigate the Lambert function for DDAEs, which has only been done for DDEs. Furthermore, it has 
been shown in [16] that some important spectral/stability results for Lambert function are only valid 
when the simultaneous triangularizability of the system coeficients is assumed. Therefore, studying the 
relation between the Lambert function and the w.e.s of DDAEs would be an interesting topic. Finally, 
further investigation on the relation between the D-perturbation index and the perturbation index, and 
sharper estimations for the D-perturbation index will be the third research interest in the future. 
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