Judd-Ofelt Parameters of Sm³⁺-doped Alkali Telluroborate Glasses

Vu Phi Tuyen*

Graduate University of Science and Technology - VAST, Hanoi, Vietnam

Received 15 January 2016 Revised 22 February 2016; Accepted 21 March 2016

Abstract: Alkali borotellurite glass (ABTe) doped with concentration of 0.5 mol% Sm³⁺ ions was prepared by melting method. The absorption, luminescence spectra and lifetime of ABTe:Sm³⁺ have been measured at room temperature. The results were analyzed using Judd–Ofelt (JO) theory, that gives the Ω_{λ} intensity parameters, transition probabilities ($A_{\rm R}$), calculated branching ratios ($\beta_{\rm Res}$) and stimulated emission cross-sections ($\sigma_{\lambda p}$) for ${}^{4}{\rm G}_{5/2} \rightarrow {}^{6}{\rm H}_{\rm J}$ transitions.

Keywords: Alkali borotellurite glass, Judd-Ofelt theory.

1. Introduction

Samarium with $4f^5$ electron configuration usually exists in triply ionized (Sm³⁺), which is a quite popular rare earth element. The optical properties of Sm³⁺ ions doped glasses have been extensively investigated due to their wide applications in many optical devices like: lasers, sensors, high-density memories, undersea communications and optical amplifiers [1,2]. Recently there have been many reports on optical properties of Sm³⁺ doped glasses to which TeO₂ component was added. Besides, the authors also gives the application prospects of these glasses [1-4].

In this work, the optical properties of Sm^{3+} in borotellurite glass with co-former B_2O_3 and TeO_2 (TeO₂-B₂O₃-Na₂O-CaO-Al₂O₃-Sm₂O₃) being a low phonon energy and high refractive index material [1-4] have been investigated by using Judd-Ofelt theory. The different types of network_modifier like Na₂O, CaO and Al₂O₃ were added to borotellurite glass to improve their chemical durability and alter the physico-chemical properties. Al₂O₃ has received significant consideration as the most likely useful matrix composition due to its high solubility of the RE³⁺ ions.

2. Experiments

Alkali-borotellurite glass (ABTe) with the composition of 44.5TeO₂+ $30B_2O_3$ + $5Al_2O_3$ + $10Na_2O_4$ + $10CaO+0.5Sm_2O_3$ was prepared by conventional melt quenching. The optical absorption spectrum

^{*}Tel.: 84-1299958668

Email: tuyenvuphi@yahoo.com

was obtained between wavelengths 300 and 2000 nm using Jascco V670 spectrometer. The photoluminescence spectrum was recorded by Fluorolog-3 spectrometer, model FL3-22, Horiba Jobin Yvon. Luminescence lifetime was measured using a Varian Cary Eclipse Fluorescence Spectrophotometer. All the measurements were carried out at room temperature.

3. Results and discussion

3.1. Absorption spectra and Judd-Ofelt parameters

Fig. 1. The absorption spectra of ABTeSm³⁺ glasses (a) in the range of UV.Vis and (b) in the range of NIR.

Absorption spectra of the ABTe:0.5 mol%Sm³⁺ glass in two regions of wavelength 350–500 nm and 900–1700 nm are showed in Fig. 2. The observed 13 absorption bands were assigned to transitions from the ${}^{6}\text{H}_{15/2}$ ground state to the ${}^{6}\text{H}_{15/2}$ excited states of Sm³⁺ ions by using Carnall's paper [5]. The ${}^{6}\text{H}_{5/2} \rightarrow {}^{6}\text{F}_{1/2}$ and ${}^{6}\text{H}_{5/2} \rightarrow {}^{6}\text{F}_{3/2}$ transitions obey the selection rule $\Delta S = 0$, $|\Delta J| \le 2$ and $|\Delta L| \le 2$, so these are hypersensitive transitions of Sm³⁺ ions [4]. The position and intensity of these transitions strongly depend on structural and polarization of ligand. In the UV-Vis regions, the various ${}^{2S+1}\text{L}_J$ energy levels are very close to each other. Therefore, the absorption transitions are overlapped and that creates broad bands. The strongest intensity in this region corresponds to ${}^{6}\text{H}_{5/2} \rightarrow {}^{6}\text{P}_{3/2}$ transition (at the wavelength of 402 nm). This transition is a spin allowed transitions of Sm³⁺ ion in glass host are also compared with Sm³⁺-diluted acid solution (aquo-ion) system [5] and show in Table 1. From transition energies, the nephelauxetic ratio ($\overline{\beta}$) and Sm³⁺-ligand bonding parameter (δ) have been calculated by using the formulas in references [6,7]. For ABTe:Sm³⁺, the values of $\overline{\beta}$ and δ are 1.0036 and - 0.29, respectively. Thus, the bonding of Sm³⁺ ions with the local host is ionic bond [1-4].

62

Transition ${}^{4}\text{H}_{15/2} \rightarrow$	$v_{exp}(cm^{-1})$	v_{aquo} (cm ⁻¹)	$f_{exp}(\times 10^{-6})$	$f_{cal}(\times 10^{-6})$
${}^{6}F_{1/2}$	6,302	6,400	0.36	0.92
${}^{6}\text{H}_{15/2}$	6,534	6,508	1.54	0.03
${}^{6}F_{3/2}$	6,760	6,630	3.89	3.45
${}^{6}F_{5/2}$	7,181	7,100	6.05	5.93
⁶ F _{7/2}	8,143	8,000	6.45	6.46
${}^{6}F_{9/2}$	9,270	9,200	4.25	4.11
${}^{6}F_{11/2}$	10,558	10,500	0.72	0.67
${}^{4}I_{9/2,11/2,13/2}, {}^{4}M_{15/2}$	21,262	20,800	3.11	2.89
${}^{4}M_{17/2}, {}^{4}G_{9/2}$	22,770	22,700	0.59	0.35
$({}^{6}P, {}^{4}P)_{5/2}, {}^{4}M_{17/2}$	23,950	24,050	1.53	1.64
${}^{4}F_{7/2}, {}^{6}P_{3/2}$	24,743	24,950	12.75	12.71
${}^{6}P_{7/2}$	26,641	26,750	2.98	2.93
${}^{4}D_{3/2}, {}^{4}D_{5/2}$	27,575	27,700	3.64	2.95
	$\overline{\beta} = 1.0036, \delta = -0.0000$.29	$rms = 0.59 \times 10^{-6}$	

Table 1. Energy transitions (v), bonding parameters (δ), the experimental (f_{exp}) and calculated (f_{cal}) oscillator strengths for ABTe:Sm³⁺ glass

3.2. Judd-Ofelt parameters

The Judd-Ofelt (JO) theory [8,9] was shown to be useful to characterize radiative transitions for RE-doped solids, as well as RE-doped aqueous solutions. This theory defines a set of three intensity parameters, Ω_{λ} ($\lambda = 2, 4, 6$), that are sensitive to the environment of the rare-earth ions and can be used to predict a lot of the spectroscopic parameters of the rare earth ions in the host materials. According to the JO theory, the electric dipole oscillator strength of a transition from the ground state to an excited state is given by

$$f_{cal} = \frac{8\pi^2 mcv}{3h(2J+1)} \times \frac{\left(n^2 + 2\right)^2}{9n} \sum_{\lambda=2,4,6} \Omega_{\lambda} \left\langle \Psi J \| U^{\lambda} \| \Psi' J' \right\rangle^2$$
(1)

where *n* is the refractive index of the material, *J* is the total angular momentum of the ground state, Ω_{λ} are the JO intensity parameters and $\|U^{\lambda}\|^2$ are the squared doubly reduced matrix of the unit tensor operator of the rank $\lambda = 2, 4, 6$, which are calculated from intermediate coupling approximation for a transition $|\psi J\rangle \rightarrow |\psi' J'\rangle$. These reduced matrix elements are nearly independent of host matrix as noticed from earlier studies [4].

On the other hand, the experimental oscillator strengths, f_{exp} , of the absorption bands are determined experimentally using the following formula [1-4]

$$f_{\rm exp} = 4.318 \times 10^{-9} \int \alpha(\nu) d\nu$$

where α is molar extinction coefficient at energy v (cm⁻¹). The $\alpha(v)$ values can be calculated from absorbance *A* by using Lambert–Beer's law

 $A = \alpha(v)cd$

(3)

(2)

where c is RE^{3+} concentration [dim: L⁻³; units: mol/dm³], d is the optical path length [dim: L; units: cm]

By equating the measured and calculated values of the oscillator strength (f_{cal} and f_{exp} and solving the system of equations by the method of least squares, the JO intensities parameters Ω_{λ} ($\lambda = 2,4$ and 6) can be evaluated numerically. In the case of ABTe:0.5mol%Sm³⁺ glass, $\Omega_2 = 2.95 \times 10^{-20}$ cm², $\Omega_4 = 10.99 \times 10^{-20}$ cm² and $\Omega_6 = 5.26 \times 10^{-20}$ cm². The Ω_2 is more sensitive to the local environment of the RE³⁺ ions and is often related with the asymmetry of the local crystal field and the valency of RE³⁺– ligand bond. The value of Ω_2 in ABTe:Sm³⁺ glass is smaller than that in TRZNB glass (6.81×10^{-20} cm²) [4] but is larger in B4TS glass (0.06×10^{-20} cm²) [4], PTBS glass (0.21×10^{-20} cm²) [2] and LGT10 glass (0.73×10^{-20} cm²) [1]. Thus the asymmetry of crystal field at the Sm³⁺ ions site and covalency of Sm³⁺-ligand bond in ABTe glass is lower than that in the TRZNB glasses but higher in B4TS, PTBS and LGT10 glasses

3.4. Emission spectrum

The emission spectrum of the ABTe:Sm³⁺ glasses was recorded using 402 nm excited wavelength and is shown in Fig. 2, the spectrum consists of 5 observed emission bands at wavelengths of 560, 600, 645, 710 and 795 nm which correspond to the ${}^{4}G_{5/2}\rightarrow{}^{6}H_{J}$ (J = 5/2, 7/2, 9/2, 11/2, 13/2) transitions, respectively. Among emission transitions, the ${}^{4}G_{5/2}\rightarrow{}^{6}H_{7/2}$ transition has the most intense intensity whereas the ${}^{4}G_{5/2}\rightarrow{}^{6}H_{13/2}$ transition is very weak in intensity. The ${}^{4}G_{5/2}\rightarrow{}^{6}H_{9/2}$ and ${}^{4}G_{5/2}\rightarrow{}^{6}H_{11/2}$ transitions are purely electric dipole transitions, whereas the ${}^{4}G_{5/2}\rightarrow{}^{6}H_{5/2}$ and ${}^{4}G_{5/2}\rightarrow{}^{6}H_{7/2}$ transitions include both electric and magnetic dipole transitions.

Fig. 2. The emission spectrum of the ABTe:Sm³⁺ glass.

3.4. Radiative parameters

From the JO parameters and emission spectrum, the radiative properties of Sm^{3+} ion such as: transition probabilities (A_R), radiative lifetime (ι_R), branching ratios (β_{cal} and β_{exp}), effective line width ($\Delta\lambda_{eff}$), stimulated emission cross-section ($\sigma(\lambda_P)$) and integrated emission cross section (Σ_{ij}) have calculated for ${}^4\text{G}_{5/2} \rightarrow {}^6\text{H}_J$ radiative transitions. The detail formulas for these parameters have been given in previous reports [6,7]. The results are displayed in Table 2.

64

${}^{4}\text{G}_{5/2} \rightarrow$	$v ({\rm cm}^{-1})$	$\beta_{\mathrm{cal}}(\%)$	β_{\exp} (%)	$\Delta\lambda$ (nm)	$\Sigma_{ij} (\times 10^{-18} \text{ cm})$	$\sigma (\times 10^{-22} \mathrm{cm}^2)$
${}^{6}\text{H}_{5/2}$	17,746	5.20	6.50	9.33	0.52	0.91
${}^{6}\text{H}_{7/2}$	16,674	49.90	45.60	12.85	5.48	14.82
${}^{6}\text{H}_{9/2}$	15,457	23.70	34.94	14.94	3.02	8.49
${}^{6}\text{H}_{11/2}$	14,158	14.24	10.86	24.12	2.18	4.46
${}^{6}\text{H}_{13/2}$	12,623	1.72	2.10	36.68	0.32	0.56

Table 2. Radiative parameters of ${}^{4}G_{5/2} \rightarrow {}^{6}H_{J}$ transition for Sm³⁺ ions in ABTe:Sm³⁺ glass

It is noted that there is a good agreement between experimental (β_{exp}) and calculated (β_{cal}) branching ratios. The stimulated emission cross-section, integrated emission cross section and branching ratio are important parameters affecting the potential laser performance. These parameters of ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ transition gets a maximum value and they are larger than those of some other glasses [1-4]. Thus, the ${}^{4}G_{5/2} \rightarrow {}^{6}H_{7/2}$ transition of Sm³⁺ ions in ABTe glass is found to be suitable for developing the visible laser and fiber optic amplifier.

Fig. 3. Luminescence decay profiles of the ${}^{4}G_{5/2}$ of Sm³⁺ ions in ABTe glass

The emission decay profile of the ${}^{4}G_{5/2}$ excited state of Sm³⁺ ions in ABTe glass was obtained by exciting the sample at 402 nm and was shown in Fig. 3. The measured lifetimes (τ_{exp}) of samples have been determined by the formula:

$$\tau_{\exp} = \frac{\int tI(t)dt}{\int I(t)dt}$$
(4)

The measured lifetime of ${}^{4}G_{5/2}$ level is $\tau_{exp} = 1.31$ ms whereas the calculated lifetime is $\tau_{cal} = 1.79$ ms, respectively. The discrepancy between the measured and calculated lifetime may be due to the nonradiative transitions. The quantum efficiency of the fluorescent level is defined as: $\eta = \tau_{exp}/\tau_{cal}$ [7]. In this case, the luminescence quantum efficiency is 73.2 %. This relatively high value indicates that the nonradiative processes are not too strong at low-doping level of Sm³⁺ ions in ABTe glass.

4. Conclusions

The optical properties of Sm^{3+} -doped alkali borotellurite glass have been investigated. Negative value for the bonding parameter indicates the ionic nature of Sm^{3+} -ligand bond in ABTe glass. Moreover, the small value of Ω_2 shows that the coordination structure surrounding the Sm^{3+} ions has high symmetry. By using JO theory, the radiative properties such as branching ratios, the stimulated emission cross-section and integrated emission cross section have been predicted. The results show that the ${}^4\text{G}_{5/2} \rightarrow {}^6\text{H}_{7/2}$ transition of Sm^{3+} ions in ABTe glass is acceptable for one of parameters of laser material emission and fiber optic amplifier.

References

- [1] M. Jayasimhadri, E.J. Cho, K.W. Jang, H.S. Lee, S.I. Kim, J. Phys. D: Appl. Phys. 41 (2008) 175101 (7pp)
- [2] B.C. Jamalaiah, M.V. Kumar, K.R. Gopal, Opt. Mater. 33 (2011) 1643-1647.
- [3] K. Maheshvaran, K. Linganna, K. Marimuthu, J. Lumin. 131 (2011) 2746-2753.
- [4] O.Ravi, C.M. Reddy, L. Manoj, D.B.P. Raju, J. Mol. Struct.1029 (2012) 53-59.
- [5] W.T. Carnall, P.R. Fields, K. Rajnak, J. Chem. Phys. 49 (1968) 4424-4442
- [6] P. Van Do, V.P. Tuyen, V.X. Quang, N.T. Thanh, V.T.T. Ha, N.M. Khaidukov, Y.-I. Lee, B.T. Huy, J. Alloys Compd. 520 (2012) 262-265.
- [7] P. Van Do, V.P. Tuyen, V.X. Quang, N.T. Thanh, V.T.T. Ha, H. Van Tuyen, N.M. Khaidukov, J. Marcazzó, Y.-I. Lee, B.T. Huy, Opt. Mater. 35 (2013) 1636-1641
- [8] B.R. Judd, Phys. Rev. 127 (1962) 750-761.
- [9] G.S. Ofelt, J. Chem. Phys. 37 (1962) 511-520.