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Abstract: The finite size effect causes many interesting behaviors in properties of a weakly 

interacting Bose gas. These behaviors were considered in one-loop approximation of quantum 

field theory. In this paper the influence is investigated in improved Hatree-Fock approximation, 

which gives more accurate results. 
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1. Introduction

 

The finite size effect is one of the most interesting effects in quantum physics, which takes place in 

all of real systems and has been considered thoroughly. It is a hot topic in magnetic material [1], 

superconductivity [2], nuclear matter [3] and so on. 

In Bose-Einstein condensate (BEC) field, the finite size effect causes the quantum fluctuation on 

top of the ground state, which leads to Casimir effect [4]. For two-component Bose-Einstein 

condensates, this effect was investigated in [5], in which two essential results are that the Casimir 

force is not simple superposition of the one of two single component BEC due to the interaction 

between two species and one of the most important result is that this force is vanishing in limit of 

strong segregation. In a dilute BEC, using Euler–Maclaurin formula, author of Ref. [6] calculated the 

Casimir force corresponding to Dirichlet and Robin boundary conditions. The result shows that the 

Casimir force is attractive and divergent when distance between two slabs approaches to zero. 

One common thing of these papers is that the finite size effect is studied in one-loop 

approximation. In this respect, the effective mass and order parameter do not depend on the distance 

between two slabs. In this paper, we consider the influence of finite size effect in a weakly interacting 

Bose gas in improved Hatree-Fock (IHF) approximation.  
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2. Research content 

To begin, let us start from Lagrangianof a weakly interacting Bose gas [7], 
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where m  is atomic mass,  is Plack’s constant, the coupling constant g  is determined through 

 s-wave scattering length 
sa as 24 / ;sg a m   is the chemical potential and in case of dilute gas 

one has 0gn   with 
0n  being bulk density of the condensate;   is field operator and its mean value 

plays the role of order parameter. We limit our attention to order parameters that are translationally 

invariant in the x and y directions. 

In order to obtain the Hatree-Fock approximation, we shift the field operator as follows 
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Substituting (2) into (1), among others, we obtain the interaction Lagrangian 
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At finite temperature in the Hatree-Fock approximation, the interaction Lagrangian (3) gives 

Cornwall-Jackiw-Tomboulis (CJT) effective potential is defined as [8], 
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in which 0D  and D are propagators at tree and Hatree-Fock approximation, respectively. Here we 

use the symbol 
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where k  is wave vector and n  is Matsubara frequency at temperature T. We realized that 

Goldstone's theorem is not satisfied in this approximation. To satisfy Goldstone's theorem, the 

effective potential (4) need a quantity 
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Combining (4) and (5) we get CJT effective potential, which restores Goldstone boson 
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The dispersionrelationcan be obtained by request 
1det 0D   and  
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with M being the effective mass. Minimizing effective potential (6) one gets Schwinger–Dyson 

(SD) and gap equations 
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We consider the effect from the compactified space along z-direction for the time being. Our 

system is confined between two parallel plates perpendicular to z-axis and separated by a distance .  

Because of the confinement along z-axis, the wave vector is quantized as 2 2 2

jk k k  , in which the 

wave vector component k is perpendicular to0z-axis and jk is parallel with0z-axis. For boson system 

the periodic boundary condition is employed, which has the form after combining to Dirichlet 

boundary condition at two plates 

, 1,2,3,...j

j
k j


   

To seek the simplicity, we introduce dimensionless distance L


  with 
02mgn

   being 

healing length, 0n  is density in bulk. By this way, the dimensionless wave vector k   becomes  
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   .Using Euler–Maclaurin formula [9] one has 
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After scaling to bulk density n0the dimensionless order parameter is reduced to 0

0n


  . 

Combining (8), (9), (10) and (12), we obtain SD and gap equations in dimensionless form 
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It is easily to find the solution for (13), which is read as 

2,M   (14) 
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It is obviously that the effective mass is the same as that in one-loop approximation while the order 

parameter is different. In one-loop approximation, the order parameter is constant and equals to unity. 

Eq. (15) shows that in IHF approximation depends strongly on the distance between two plates, 

especially in small- region and it turns out to be divergent when the distance approaches to zero. 

Experimentally, consider for rubidi87 with parameters 25 91.44 10 kg, 5.05 10 msm a      and 

400   nm. Fig. 1 is the evolution of order parameter versus the distance between two plates. 

When the distance  increases, the order parameter decays fast and tends to constant at large .  

Using the s-wave scattering length on can rewrite Eq. (15) in form 
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For a dilute Bose gas, 3

0 1,sn a  expanding (16) in power series one arrives 

 
1/2

3

0

1

3/2

,
3

s

L

n a
    

(17) 

in which 1 1   is order parameter in one-loop approximation. 

3. Conclusions 

By mean of CJT effective action method, in IHF approximation we consider the finite size effect 

on a weakly interacting Bose gas. Our main results are in order: 
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- The order parameter depends strongly on the distance between two plates, in which Bose gas is 

confined. For a dilute Bose gas, this parameter equals to its value in one-loop approximation after 

adding a term
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 This term is significant in small region of distance .  

- Because of independence of the effective mass M on distance between two plates, the finite 

size effect have no extra contribution on Casimir force in comparing to the one in one -loop 

approximation [6]. 
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