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Abstract:  This paper is concerned with the Bohl-Perron theorem for differential algebraic 

equations. We prove that the system 0( ) '( ) ( () ),E t x t x tA t t t   is exponentially stable if 

and only if for any bounded input q, the equation 

   0 0( ) '( ) ( ) , ( ) 0,( ) ( )tE t x t A t qx x t t tt    

has a bounded solution. 

Keywords: Differential algebraic equation, asymptotic stability, input - output bounded 
function. 

1. Introduction 

In lots of applications there is a frequently arising question, namely how robust is a characteristic 
qualitative property of a system (e.g., the stability) when the system comes under the effect of 
uncertain perturbations. The designer wants to have operation systems working stably under small 
perturbation. Therefore, the investigation which conditions ensures robust stability play an important 
role both in theory and practice. On the other hand, to measure the robust stability, one proceed a test 
and expect that with rather good input, the output will satisfy some desired properties. For example, if 
the bounded input implies the boundedness of output then our system must be stable. The aim of this 
paper is to answer the above questions. We focus on studying the robust stability of time-varying 
systems of differential-algebraic equations (DAE-s) of the form 

                                                  0( ) '( ) ( ) ), ,(E t x t A t tx t t                                                      (1.1)  

where E(·), A(·) are continuous matrix functions defined on [0, ) , valued in .d d  The leading term 

E(t) is supposed to be singular for all 0 .t t  If the system  (1.1)  is subjected to an outer force q , then 

it becomes 

_______ 

Corresponding author. Tel.: 84-903212531. 

  Email: ntha2009@yahoo.com 

  https//doi.org/ 10.25073/2588-1124/vnumap.4288 



N.T. Ha / VNU Journal of Science: Mathematics – Physics, Vol. 34, No. 3 (2018) 61-70 

 

62

                                          0( ) '( ) ( ) , ,( ) ( )E t x t A t x q t t tt                 (1.2)  

These systems occur in various applications, such as optimal control, electronic circuit 
simulation, multibody mechanics, etc., and they are described by a so-called differential algebraic 
systems with time varying, see [1, 2]. Therefore, it is worth to consider the stability such these system. 
To study that, the index notion, which plays a key role in the qualitative theory and in the numerical 
analysis of DAE-s, should be taken into consideration in the robust stability analysis, see [3, 4]. Many 
works are concerned to this problem such as [2, 5, 6]. In [7], Authors consider the Bohl-Perron type 
theorem for dynamic equation on time scales meanwhile in [8] Authors consider the stability under 
small perturbations for implicit difference equations. Our main goal of this paper is to develop these 
results by considering the relation between the stability of the system (1.1) and the analytic properties 
of outer force ( ).q t  

The paper is organized as follows. In the next section we recall some basic notions and 
preliminary results on the theory of linear DAE-s and deal with the solvability of DAE-s. In Section 3, 
we prove that if the system (1.1) is exponentially stable, then under small feedback 
perturbations ( ) ( ) ( )q t B t x t , the system (3.1) is still stable. In the last section, the famous Bohl-Perron 

theorem for linear equation is presented. 

2. Preliminary 

2.1. Some surveys on linear algebra 

In this section, we survey some basic properties of linear algebra. Let ( , )E A be a pencil of 

matrices. Suppose that rank E = r. Denote  :   A ImS x x E  and let Q be a projector onto er K E . 

Lemma 2.1 The following assertions are equivalent 

a)  er 0S K E  ;                                 (2.1) 

b) The matrix G E AQ  is nonsingular;                   (2.2) 

c) erd S K E  ;                     (2.3) 

Proof see [9, Appendix 1]. 

Lemma 2.2 Suppose that the matrix G is nonsingular. Then, there hold the following relations: 

a) 1P G E ; where .P I Q   

b) 1G AQ Q  ; 

c) 1Q QG A  is the projector onto er K E  along S; 

d) QG−1 does not depend on the choice of Q. 

Proof See [9, Appendix 1].               

2.2. Solvability of implicit linear dynamic equations 

We consider the linear differential-algebraic system 

                                                    0( ) '( ) ( ) , ,( ) ( )E t x t A t x q t t tt       (2.4) 

where E, A are continuous matrix functions as in Section 1 and q is a continuous function defined on 

[0, ) , valued in .n  Suppose that ( )Ker E t  is smooth in the sense there exists an continuously 
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differential projector ( )Q t onto ( )Ker E t , i.e., 1(0, , )n nQ C     and 2Q =Q , Im Q(t)=Ker E(t) for all   

t ≥ 0. Set QP I  , then ( )P t  is a projector along ( )Ker E t . With these notations, the system (2.4) can 

be rewritten into the form 

                                             0( )( ) '( ) ( ) ( , ,) ( )tE t P q tx t A t x t t      (2.5) 

where A A EP  .  Define G E AQ  . 

Definition 2.3 (see also [6, Section 1.2]) The DAE (2.4) is said to be index-1 tractable if  ( )G t is 

invertible for almost every [0, )t   . 

Note that by Lemma 2, the index-1 property does not depend on the choice of the projectors ,Q  

see [6, 5].   

Now let (2.4) be index-1. Taking into account the equalities 1 ,G E P  1 1 ,G A Q G AP     and 

multiplying both sides of (2.2) with 1PG , 1QG respectively, we obtain  

                                                    
1 1

1 1

( ) ' ( ' )

.

Px P PG A Px PG q

Qx QG APx QG q

 

 

   


 
      

Thus, the system is decomposed into two parts: a differential part and an algebraic one. Hence, it is 
clear that we need only to address the initial value condition to the differential components. Denote 
u Px , the differential part becomes 

                                               1 1' ( ' )u P PG A u PG q                    (2.6) 

Multiplying both sides of (3.3) with Q yields ' ' ( ) ' '( ).Qu QP u Qu Q Qu    Hence, the equation 

(3.3) has the invariant property in the sense that every solution starting in 0Im ( )P t remains in 

Im ( )P t for all t.  

We consider the homogeneous case ( ) 0q t  and construct the Cauchy operator generated by 

(2.4). Let 0 ( , )t s  denote the Cauchy operator generated by the equation (3.3), i.e.,             

                                               
 1

0 0

0

( , ) ' ( , )

( , ) .

d
t s P PG A t s

dt

s s I


   


 

 

Then, the Cauchy operator generated by system (2.4) is defined by  

                                               

 

( , ) ( , )

( ) ( , ) 0

d
E t s A t s

dt

P s s s I


  


   

 

and it can be given as follows:  

                                   1
0 0( , ) ( , ) ( ) ( ) ( , ) ( ),t s I QG A t s P s P t t s P s            

where ( )Q t  is the canonical operator defined by (2.3) in Lemma 2 and ( ) ( )P t I Q t   is a projector on 

( )S t along ( )Q t . By the arguments used in [6, Section 1.2], the unique solution of the initial value 

problem for (2.4) with the initial condition
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                                            0 0 0 0( ) ( ) 0, ,P t x t x t t                                           (2.7)  

can be given by the constant-variation formula 

                            
0

1 1
0 0 0 0( ) ( , ) ( ) ( , ) ( ) ( ).

t

t

x t t t P t x t PG q d QG q t                     (2.8)  

3. Stability under small perturbations 

Consider the perturbation under the form ( ) ( ) ( )q t B t x t  where ( )B t  is a matrix function. Then, 

the equation (2.4) becomes 

                                           0( ) '( ) ( ) ( ) ( ), ,E t x t A t B t x t t t                                       (3.1)  

       The equation (3.1) is an index -1 tractable if and only if the matrix ( )G E A B Q    is invertible. 

It is easy to see that 1( ) .G I BQG G   Therefore, the invertibility of G is equivalent to the 

invertibility of 1.I BQG  It is seen by Lemma 2 that the invertibility of 1I BQG does not depend 

on the choice of .Q  

Definition 3.1  

1. The DAE (2.4) is said to be stable if for any 0  and 1 0t t , there exists a positive constant 

( )   such that if 1 1( )P t x  implies ( )x t  for all 1t t , where ( )x  is the solution of (2.4) 

satisfying  1 1 1( ) ( ) 0.P t x t x 
 

The DAE (2.4) is uniformly stable if it is stable and the above  is independent of 1t .
 

2. The DAE (2.4) is said to be exponential stable if there exist the positive 
numbers 0, 0M   such that  

                                   ( )
0( ) ( ) ( ) , , , .t sx t Me P s x s t s t s t     

Following the classical way, we see that exponential stabilily and uniformly stability of 
differential algebraic equation are characterized in term of its transition operator as the follows: 

Theorem 3.2 

1. The DAE (2.4) is uniformly stable if and only if there exist the positive numbers 0 0M  such 

that 

0 0( , ) , , , .t s M t s t s t     

2. The DAE (2.4) is exponentially stable if and only if there exist the positive numbers  

0,M  0   such that 

                                           ( )
0( , ) , ,    , .t st s Me t s t s t                            (3.2)            

 

Proof See [4].                           

For the uniform stability, we have the following result. 



N.T. Ha / VNU Journal of Science: Mathematics – Physics, Vol. 34, No. 3 (2018) 61-70 65

Theorem 3.3 Assume that the equation (2.4) is index-1, uniformly stable and satisfies 

1.  The matrices 1( ) ( ) ( )I Q t G t B t    are invertible 1 0t t   and  
0

1sup ( ) ( ) ( ) .
t t

I Q t G t B t c



      

2.  The integrals 
0

1( ) ( ) ( )  .
t

P t G t B t dt N


      

Then, the system (3.1) is uniformly stable, i.e., there exists a constant 1 0M  such that the solution 

x(·) of (3.1) satisfies 

        1 0( ) ( ) , .x t M x s t s t   
 

Proof By using the constant-variation formula (2.8), for all 0t s t  , we have 

                            

 

1 1

1 1

        ( ) ( , ) ( )  ( , ) ( ) ( ) ( ) ( )

( ) ( ) ( , ) ( )  ( , ) ( ) ( ) .

t

s

s

t

s

s

x t t s P s x t PG B x d QG B t x t

I QG B t x t t s P s x t PG B x d

   

   

 

 

    

     





   

   

 

Therefore, 

                 
1

1 1( ) ( ) ( , ) ( ) ( , ) ( ) ( ) .
t

s

s

x t I QG B t t s P s x t PG B x d   


  
     

 
                 (3.3) 

By virtue of uniform stability of the equation (2.4), there exists the numbers 0oM  such that 

0 0( , ) ( ) ( , ) , .t s P s t s M t s t     
 

Since 
0

1sup ( ) ( ) ( )
t t

I Q t G t B t c



   ,  

1
0 0( ) ( ) ( ) .

t

s

s

x t cM x cM PG B x d       

By using Gronwall-Bellman inequality, we get    

1
0 0( ) exp ( ) ( ) ( ) .

t
N

s

x t cM PG B x d cM e x s    
  

  
    

Put 1 0
NM cM e , we obtain the proof.            

Theorem 3.4  If the equation (2.4) is index-1, exponential stable and satisfies, the matrices 
1( ) ( ) ( )I Q t G t B t   are invertible, 0t t   and  

                           
0

1 1sup ( ) ( ) ( ) , limsup ( ) ( ) ( ) ,
tt t

I Q t G t B t c P t G t B t
cM


 



         

where ,M  is defined by Definition 1. Then, there exist constants K >0 and 1 such that 

1 ( )
0( ) ( ) , .t sx t Ke x s t s t      

for every solution x(·) of (3.1). That is, the perturbed equation (3.1) preserves the exponential stability. 
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Proof. Let 0 be a positive number such that 0

cM

cM

 



 . Then, follow the second assumption, 

there exists 0T t such that 

                                              1
0 0( ) ( ) ( ) ,P t G t B t t T      .                                        (3.4)

 

By the continuity of the solutions of (3.1) on the initial condition we can find a constant 

0TM (where 
0TM depends only on 0T ) such that  

                                         
0 0 0( ) ( ) ,     for all    .Tx t M x s t s t T                                    (3.5)

 

First, we consider the case 0 0t T s t   . Then, follow the estimations (3.3), (3.4) and (3.5), 

 we get 

                      

 

 

0

0

0

0

0

0

1
1 1

0 0

( ) ( ) 1
0

( ) ( )
0 0

( ) ( ) ( , ) ( ) ( , ) ( ) ( )

( ) ( ) ( )

( ) ( ) .

t

T

T

t
t T t

T

t
t T t

T

x t I QG B t t T P T x t PG B x d

cM e x T e PG B x d

cMe x T cM e x d

  

  

   

  

   


 

    

   

 
     

 
 

 
  

 
 

  







   



 

Multiplying both sides of the above inequality with te yields 

 0

0

0

0( ) ( ) .
t

Tt
T

T

e x t cMe x cM e x d       
 

By using Gronwall-Bellman inequality, we obtain  

                                                 0 0 0( )( )
0( ) ( ) .T cM t Tx t cMe x T e     

Therefore, 

                                                   0 00 ( ) ( )

0( ) ( ) .
c M t TTx t cMe x T e

     
  

Paying attention on (3.5) obtains    

                                                   0 00

0

( ) ( )
( ) ( ) .

c M t TT

Tx t cMe M x s e
     

  

Thus,  

                                          0 1 0 1 0

0

( ) ( )
1( ) ( ) ( ) ,T t T t T

Tx t cMe M x s e K x s e        

where 0

01
T

TK cMe M and 1 0( ) 0cM        . 

In the case 0t s T  , it follows from the estimate 1
0( ) ( ) ( )P t G t B t     holds for all  ρ ≥ s. 

Similarly, we have 

                                   ( ) ( ) 1( ) ( ) ( ) ( ) ,
t

t s t

s

x t c Me x s Me PG B x d         
 

  
 

   

and  
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0( ) ( ) ( ) ( ) ,
t

t s

s

e x t cMe x s cM e x d          

which implies 

 

 

0

0 1

( ) ( )

( ) ( ) ( )

    ( )  ( ) ,

( )   ( ) ( ) .

cM t st s

cM t s t ss

e x t cMe x s e

x t cMe x s e cMe x s

  

   

 

    



  
 

For the remaining case 0 0t s t T   , with 1 0  defined above, we have 

                  
0 0 0

0 0 0

( )( ) ( ) ( ) ( ) .T T T t s
T T Tx t M x s M e e x s M e e x s    

 

Put  0

01max , , T
TK K cM M e , we get ( )( ) ( ) .t sx t Ke x s   The proof is completed.                 

4. Bohl-Perron Theorem for differential algebraic equations 

The main aim of this section is to prove the Bohl-Perron’s Theorem for linear differential 
algebraic equation. That is we investigate the relation between the exponential stability of DAE (1.1) 
and the boundedness of solutions of nonhomogeneous equation (2.4). 

In solving the equation (2.4) we see that the function q is split into two components 1PG q and 
1 .QG q  Therefore, we consider q as an element of 

 
0 0

1 1
0( ) [0, ], :  sup ( ) ( ) ( )   and sup ( ) ( ) ( ) .d

t t t t

L t q C Q t G t q t P t G t q t 

 

 
       

 
  

 

It is easy to see that 0( )L t is a Banach space with the norm 

           
 

0

1 1sup ( ) ( ) ( )  ( ) ( ) ( ) .
t t

q Q t G t q t P t G t q t 



   
 

Lemma 4.1  If for every function 0(.) ( )q L t , the solution 0(., )x t of the Cauchy problem (2.4) with the 

initial condition 0 0( ) ( ) 0P t x t   is bounded, then there is a constant k such that for all 0t t , 

                                                         0

0sup ( , ) .
t t

x t t k q



                              (4.1)

 

Proof By assumption, for any 0(.) ( )q L t , the solution x(t) associated to q of the Cauchy problem 

(2.4) with the initial condition 0 0( ) ( ) 0P t x t   is bounded on 0[ , ).t  Therefore, if we define a family of 

operators  
0

t t t
V


as following: 

0

0

:   L( )  

          q     ( ) ( , ).

t d

t

V t

V q x t t








 

From the assumption of Lemma, we have 
0

sup t
t t

V q


  for any 0( )q L t . Using Uniform 

Boundedness Principle, there exists a constant k >0, independent of t such that 

                                                  0

0 0sup ( , )   for all  .t
t t

x t t k V q k q t t


    

The lemma is proved.              
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Lemma 4.2 Assume that the solution of the Cauchy problem (2.4) associated with every q in 0( )L t and 

the initial condition 0 0( ) ( ) 0P t x t  is bounded. Let 1 0t t , then there exists a constant k such that 

          1

1 1sup ( , )   for all  .
t t

x t t k q t t


 

 where 1( , )x t t is the solution of (2.4) associated with q e in 1( )L t and the initial condition 1 1( ) ( ) 0.P t x t   

Proof  Let q  be arbitrary function in 1( )L t . By variation of constants formula, the solution of the 

Cauchy problem (2.4) with the initial condition 1 1( ) ( ) 0P t x t  corresponding to q is of the form 

                                           
1

1 1
1( , ) ( , ) ( ) ( ).

t

t

x t t t PG q d QG q t                                       (4.2) 

     Define q in 0( )L t as follow:  if 1t t then ( ) 0q t  , else ( ) ( )q t q t  . It is easy to see that the funtion 

    
1 1 1( ) ( , )  if   ,       ( ) 0  if   ,z t x t t t t z t t t     

is the solution of the Cauchy problem (2.4) associated with q q and initial condition 0 0( ) ( ) 0.P t x t   

By Lemma 3, 

1 0

1sup ( , ) sup ( ) =   .
t t t t

x t t z t k q k q
 

    

The proof is complete.                                    

Theorem 4.3 All the solutions of the Cauchy problem (2.4) with the initial condition 0 0( ) ( ) 0P t x t  , 

associated with an arbitrary q in 0( )L t are bounded, if and only if the index-1 DAE (1.1) is exponent-

tially stable. 

Proof The proof contains two parts. 

Necessity. First, we prove that if all the solutions of the equation (2.4) with the initial condition 

0 0( ) ( ) 0,P t x t  associated with q in 0( )L t , are bounded then the DAE(1.1) is exponentially stable. 

With an arbitrary 1 0t t , let 1 1( ) ( , ) ,  t t t t t    and 
1

d
tt x  such that 1 1( ) ( ) 0P t x t  . Then, for 

any da , we consider the function  

1
1

( ) ( , )
( ) ,  .

( )

E t t t a
q t t t

t


 

 
It is obvious that 

1 1 1 1

1 1 1

( ) ( , ) ( , )
( ) ( ) ( ) ( ) ( ) ( ) ,

( ) ( )

( ) ( , )
( ) ( ) ( ) ( ) ( ) 0.

( )

E t t t a t t a
P t G t q t P t G t P t a

t t

E t t t a
Q t G t q t Q t G t

t

 



 

 

 
  


 

   

   

 

Thus, 0( )q L t and  
0

1 1sup ( ) ( ) ( )  ( ) ( ) ( ) .
t t

q Q t G t q t P t G t q t a 



      Moreover,
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1

1

1 1

1 1
1 1 1

1 1

( , ) ( , ) ( ) ( , ) ( ) ( ) ( ) ( )

( , ) ( , )
           =   ( , ) ( )  =  .

( ) ( )

t

t

t

t t

t t

x t t t t P t x t PG q d Q t G t q t

t a t t a
t P d d

  


   

   

     

 




 

     



 

Put 
1

1
( )

( )

t

t

t d
 

   , we have 

                                          1( ) ( , ) ( ) .x t t t t a                                                              (4.3) 

From Lemma 3, we obtain 1 1( ) ( , ) ( ) ( , ) ( ) ,x t t t t a t t a t k q k a         which implies 

1( , ) .
( )

k
t t

t
 


 Thus,  

                                                         
( )

'( )   or  ( ) '( ).
t

t t k t
k


      

Then, with a fixed number c such that 1c t , we have
1

( )

( ) ( ) .
t c

kt c e


    Therefore,  

  
1

1

1
( )1 1

( ) ( )

1( , ) .
( ) ( )

c t
kt c t t

k k
k ke

t t e e
c c

 
   

  
 

 

Setting 
1

1
1

1
( )

1

1 1 1 ( )

( , )1
,  =  and max ,max ,

( )

c t
k

t tt t c

t tke
N K N

k c e 


 

  

 
   

  
we obtain the estimate 

  1( )
1 1 1( , ) ,    for all      .t tt t K e t t   

 Sufficiency. To complete the proof, we will show that if (1.1) is exponentially stable then all 
solutions of the Cauchy problem (2.4) with the initial condition 0 0( ) ( ) 0P t x t  , associated with q 

in 0( )L t  are bounded. Let 0( ),q L t suppose that 
0 0

1 1
1 2sup ( ) ( ) ( ) ,   sup ( ) ( ) ( ) .

t t t t

P t G t q t C Q t G t q t C 

 

           

Using again the formula (2.8) we have 

                

 

 0

0

( )( ) 1 1
1 2( ) ( , ) ( ) ( ) 1 .

t
t tt

t

x t t e PG q d QG q t MC e C                  

 Thus, the solutions of (2.4) associated with q are bounded. The proof is complete.      
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