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Abstract: The analytic expressions of the free energy, the mean nearest neighbor distance 

between two atoms, the elastic moduli such as the Young modulus E, the bulk modulus 

K, the rigidity modulus G and the elastic constants C11, C12, C44 for interstitial alloy AB 

with BCC structure under pressure are derived from the statistical moment method. The 

elastic deformations of main metal A is special case of elastic deformation for interstitial 

alloy AB. The theoretical results are applied to alloy FeC under pressure. The numerical 

results for this alloy are compared with the numerical results for main metal Fe and 

experiments.  

Keywords: interstitial alloy, elastic deformation, Young modulus, bulk modulus, rigidity 

modulus, elastic constant, Poisson ratio. 

1. Introduction 

Elastic properties of interstitial alloys are especially interested in many theoretical and 

experimental researchers [1-4, 7-12]. For example, in [3] the strengthening effects interstitial carbon 

solute atoms in (i.e., ferritic or bcc) Fe-C alloys are understood, owning chiefly to the interaction of C 

with crystalline defects (e.g., dislocations and grain boundaries) to resist plastic deformation via 

dislocation glide. High-strength steels developed in current energy and infrastructure applications 

include alloys wherein the bcc Fe matrix is thermodynamically supersaturated in carbon. In [4], 

structural, elastic and thermal properties of cementite (Fe3C) were studied using a Modified Embedded 
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Atom Method (MEAM) potential for iron-carbon (Fe-C) alloys. The predictions of this potential are in 

good agreement with first-principles calculations and experiments. In [7], the thermodynamic 

properties of binary interstitial alloy with bcc structure are considered by the statistical moment 

method (SMM). The analytic expressions of the elastic moduli for anharmonic fcc and bcc crystals are 

also obtained by the SMM and the numerical calculation results are carried out for metals Al, Ag, Fe, 

W and Nb in [12] 

In this paper, we build the theory of elastic deformation for interstitial AB with body-centered 

cubic (BCC) structure under pressure by the SMM [5-7]. The theoretical results are applied to alloy 

FeCunder pressure.  

2. Content of research 

2.1. Analytic results 

In interstitial alloy AB with BCC structure, the cohesive energy of the atom B (in face centers of 

cubic unit cell) with the atoms A (in body center and peaks of cubic unit cell) in the approximation of 

three coordination spheres with the center B and the radii 1 1 1, 2, 5r r r  are determined by [5-7] 
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where AB  is the interaction potential between the atom A and the atom B, in  is the number of 

atoms on the ith coordination sphere with the radius ( 1,2,3),ir i    
11 1 01 0 ( )B B Ar r r y T  is the nearest 

neighbor distance between the interstitial atom B and the metallic atom A at temperature T, 01Br is the 

nearest neighbor distance between the interstitial atom C and the metallic atom A at 0K and is 

determined from the minimum condition of the cohesive energy 0Bu , 
10 ( )Ay T  is the displacement of 

the atom A1 (the atom A stays in the body center of cubic unit cell) from equilibrium position at 

temperature T. The alloy’s parameters for the atom B in the approximation of three coordination 

spheres have the form [5-7] 
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where 
( ) ( ) / ( 1,2,3,4, , , . ,m m m
AB AB i ir r m x y z            and 

iu   is the displacement of the 

ith atom in the direction .  

The cohesive energy of the atom A1 (which contains the interstitial atom B on the first 

coordination sphere) with the atoms in crystalline lattice and the corresponding alloy’s parameters in 

the approximation of three coordination spheres with the center A1 is determined by [5-7] 
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where .. is the nearest neighbor distance between the atom A1 and  atoms in crystalline lattice.   

The cohesive energy of the atom A2 (which contains the interstitial atom B on the first  

coordination sphere) with the atoms in a crystalline lattice and the corresponding alloy’s 

parameters in the approximation of three coordination spheres with the center A2 is determined by [5-7] 
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where..is the nearest neighbor distance between the atom A2 and atoms in crystalline lattice at 0K 

and is determined from the minimum condition of the cohesive energy 
20 0, ( )A Bu y T is the displacement 

of the atom C at temperature T.  

In Eqs. (2.3) and (2.4), 0 1 2, , ,A A A Au k    are the corresponding quantities in clean metal A in the 

approximation of two coordination sphere [5-7] 

The equation of state for interstitial alloy AB with BCC structure at temperature T and pressure P 

is written in the form 
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v  is the unit cell volume per atom, r1 is the nearest neighbor distance, Boθ k T , Bok  

is the Boltzmann constant, 
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x

θ m θ
  , m is the atomic mass and ω  is the vibrational 

frequencies of atoms. At temperature 0T   K, Eq. (2.5) will be simply reduced to 
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Note that Eq.(2.5) permits us to find r1 at temperature T under the condition that the quantities k, x, 

u0 at temperature T0 (for example T0 = 0K) are known. If the temperature T0 is not far from T, then one 

can see that the vibration of an atom around a new equilibrium position (corresponding to T0) is 

harmonic. Eq.(2.5) only is a good equation of state  in that condition. Eq. (2.6) also is the equation of 

state in the case of T0 = 0K. In Eq. (2.6), the first term is the change of energy potential of atoms in 

euilibrium position and the second term is the change of energy of zeroth vibration.  If knowing the 

form of interaction potential 0 ,i eq. (2.6) permits us to determine the nearest neighbor distance 

  1 1 2,0 , , ,Xr P X B A A A  at 0 K and pressure P. After knowing , we can determine alloy 

parametrs 
1 2( ,0), ( ,0), ( ,0), ( ,0), (P, 0)X X X X Xk P P P P     at 0K and pressure P. After that, we can 
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From that, we derive the nearest neighbor distance  1 ,Xr P T at temperature T and pressure P 

11 1 1 1( , ) ( ,0) ( , ), ( , ) ( ,0) ( , ),B B A A A Ar P T r P y P T r P T r P y P T     

 
1 2 21 1 1 1( , ) ( , ), ( , ) ( ,0) y ( , ).A B A A Br P T r P T r P T r P P T     (2.8) 

Then, we calculate the mean nearest neighbor distance in interstitial alloy AB by the expressions 

as follows [5-7] 
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where 1 ( , )Ar P T  is the mean nearest neighbor distance between atoms A in interstitial alloy AB at 

pressure P and temperature T,  1 ( ,0)Ar P  is the mean nearest neighbor distance between atoms A in 

interstitial alloy AB at pressure P and 0K, 1 ( ,0)Ar P  is the nearest neighbor distance between atoms A 

in clean metal A at pressure P and 0K, 1 ( ,0)Ar P is the nearest neighbor distance between atoms A in 

the zone containing the interstitial atom B at pressure P and 0K and cB is the concentration of 

interstitial atoms B.     

The free energy of alloy AB with BCC structure and the condition B Ac c  has the form  
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where X  is the free energy of atom X, AB  is the free energy of interstitial alloy AB, cS  is the 

configuration entropy of  interstitial alloy AB. 

The Young  modulus of alloy AB with BCC structure at temperature T and pressure P is 

determined by  
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where   is the  relative deformation.   

The bulk modulus of BCC alloy AB with BCC structure at temperature T and pressure P has  

the form  
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The rigidity modulus  of alloy AB with BCC structure at temperature T and pressure P has 

the form  
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        The elastic constants of alloy AB with BCC structure at temperature T and pressure P has  

the form  
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     The Poisson ratio of alloy AB with BCC structure has the form 

 ,AB A A B B Ac c        (2.17) 

where A  and B  respectively are the Poisson ratioes of materials A and B and are determined 

from the experimental data.  

When the concentration of interstitial atom B is equal to zero, the obtained results for alloy AB 

become the coresponding results for main metal A.  

2.2. Numerical results for alloy FeC 
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where the m – n potential parameters between atoms Fe-Fe are shown in Table 1.  

            For alloy FeC, we use  the Finnis-Sinclair potential as follows 
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 where the Finnis-Sinclair potential parameters between atoms Fe-C are shown in Table 2. 

Our numerical results are summarized in tables and illustrated in figures. Our calculated results for 

Young modulus E of alloy FeC in Table 3, Table 4, Fig.5 and Fig.6 are in good agreement with 

experiments [10].  

Table 1. The m-n potential parameters between atoms Fe-Fe [8] 
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k2 


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
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
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AeV
 

k3 
4

o

eV A

  
     

 

2.958787 2.545937 10.024001 1.638980 2.468801 8.972488 -4.086410 1.483233 

Table 3. The dependence of Young modulus E(1010Pa) for alloy FeC with cC = 0.2% from the SMM and alloy 

FeC with cC 0.3%  from EXPT[10] at zero pressure 

T(K) 73 144 200 294 422 533 589 644 700 811 866 

SMM 22.59 22.03 21.58 20.75 19.49 18.28 17.65 16.96 16.26 14.81 14.06 

EXPT 21.65 21.24 20,82 20.34 19.51 18.82 18.41 17.58 16.69 14.07 12.41 

Table 4. The dependence of Young modulus E(1010Pa) for alloy FeC with cC = 0.4% from the SMM and alloy 

FeC with cC 0.3%  from EXPT[10] at zero pressure 

T(K) 73 144 200 294 422 533 589 644 700 811 866 922 

SMM 22.46 21.90 21.45 20.62 19.38 18.18 17.53 16.87 16.17 14.72 13.98 13.21 

EXPT 21.51 21.10 20.68 20.20 19.37 18.62 18.27 17.44 16.55 13.93 12.34 10.62 

 

 

 

 
Fig 1. E(cC) for FeC at P = 0. Fig 2. E(T) for FeC at P = 0. 
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Fig 3. C11, C12, C44 (cC) for FeC at P = 0. Fig 4. C11, C12, C44 (T) for FeC at P = 0. 

  

Fig 5. E(T) for alloy FeC with cC = 0.2%  

from the SMM and alloy FeC with cC 0.3%  

from EXPT [17]. 

Fig 6. E(T) for alloy FeC with cC = 0.4%  

from the SMM and alloy FeC with cC 0.3%   

from EXPT [17]. 

  

Fig 7. E(P), G(P), K(P)  for alloy FeC 

 with cC = 1% at T = 300K. 

Fig 8. G(P) for alloy FeC with cC = 1, 3 and 5% 

 at T = 300K. 
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Fig 9. C11(P), C12(P), C44(P)  for alloy FeC 

 with cC = 3% at T = 300K. 

Fig 10. C11(cC), C12(cC), C44(cC)  for alloy FeC  

at P = 10 GPa at T = 300K. 

For alloy FeC at the same temperature and pressure when the concentration of interstitial atoms 

increases, the elastic moduli E, G, K and the elastic constants C11, C12, C44 decrease. For example,  for 

FeC at T = 1000K , P = 0 when cC increases from 0 to 5%, E decreases from 12.28.1010 to 10.39.1010  

Pa, G decreases from 4.87.1010 to 4.12.1010 Pa, K decreases from 8.53.1010  to 7.21.1010Pa, C11 

decreases from 15.02.1010  to 12.71.1010 Pa, C12 decreases from 5.28.1010  to 4.46.1010 Pa and C44 

decreases from 4.87.1010  to 4.12.1010 Pa.      

For alloy FeC at the same pressrure and concentration of interstitial atoms when temperature 

increases, the elastic moduli E, G, K and the elastic constants C11, C12, C44  also decrease. For example,  

for FeC at cC = 5%, P = 0 when T increases from 100 to 1000K, E decreases from 19.39.1010 to 

10.39.1010  Pa, G decreases from 7.69.1010 to 4.12.1010 Pa, K decreases from 13.47.1010  to 

7.21.1010Pa, C11 decreases from 23.72.1010  to 12.71.1010 Pa, C12 decreases from 8.33.1010  to 4.46.1010 

Pa  and C44 decreases from 7.69.1010  to 4.12.1010 Pa.  

For alloy FeC at the same temperature and concentration of interstitial atoms when pressure 

increases, the elastic moduli E, G, K and the elastic constants C11, C12, C44  increase. For example, for 

FeC at cC = 5%, T = 300K when P increases from 10 to 70 GPa, E increases 22.27.1010 to 46.36.1010 

Pa, G increases 8.84.1010 to 18.40.1010 Pa, K increases 15.46.1010 to 32.20.1010 Pa, C11 increases 

27.24.1010 to 56.73.1010 Pa, C12 increases 9.57.1010 to 19.93.1010 Pa and C44 increases 8.84.1010 to 

18.40.1010 Pa. 

For main metal Fe in alloy FeC at T = 300 K, our calculated results of elastic moduli and elastic 

constantsare in good agreement with experiments in Tables 5-7. 

Table 5. The elastic moduli E, G, K (10-10Pa) and elastic constants C11, C12, C44(1011Pa) according to the SMM 

and EXPT [11] for  Fe at P = 0 and T = 300 K 

 E G K C11 C12 C44 

SMM 20.82 8.26 14.46 2.55 0.90 0.83 

EXPT [11] 20.98 8.12 --- 2.33 1.35 1.18 
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Table 6. The shear modulus G (GPa) according to the SMM, EXPT [13] and CAL [14] 

  for Fe at T = 300 K and P = 0, 9.8 GPa 

P (GPa) SMM EXPT [13] CAL [14] 

0 82.6 84 100 

9.8 101.6 101  120 

Table 7. Isothermal elastic modulus for Fe at P = 0 and T = 300K  

according to the SMM, CAL [16] and EXPT [15] 

Method SMM EXPT[150] CAL[16] 

[GPa]TB  170.09 168 281 

3. Conclusion 

The analytic expressions of the free energy, the mean nearest neighbor distance between two 

atoms, the elastic moduli such as the Young modulus, the bulk modulus, the rigidity modulus and the 

elastic constants depending on temperature, concentration of interstitial atoms for interstitial alloy AB 

with BCC structure under pressure are derived by the SMM. The numerical results for alloy FeC are in 

good agreement with the numerical results for main metal Fe. The numerical results for alloy FeC with 

cC = 0.2%  and  cC  = 0.4%  at zero pressure are in  good agreement with experiments. The temperature 

changes from 73K to 1000K and the concentration of interstitial atoms C changes from 0 to 5%.    
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APPENDIX 
The Hamiltonian of atom X can be written in the form 

0
ˆ ˆ ˆ

X X X XH H α V 
 

(A1) 

where Xα  is the parameter and proceeding from the condition of normalization for the statistical 

operator, it is easy to find the expression 

( )ˆ
X

X X
X α

X

ψ α
V

α


   


 

(A2) 

where ...
Xα

   expresses the averaging over the equilibrium ensemble with the Hamiltonian ˆ
XH  

and ( )X Xψ α  is the free energy.  

 Expression (A2) gives the general formula 




     0

0

ˆ( )
X

X
X X X X XV d  (A3) 

in which 0 Xψ  is the free energy of atom X corresponding to the Hamiltonian 0 XH . For many 

cases 
X

X α
V  can be written through the moments and thus we can determine it with the aid of the 

momentum formula. Therefore, using (A3) the free energy ( )X Xψ α  can be found. 

In the approximation up to fourth order the average potential energy is equal to 

2
2 4 2

0 1 23
2

X
X X X X X X X

k
U U N u γ u γ u

 
    

   

(A4) 

where 0 0
2

X X

N
U u , 1 2, ,X X Xk γ γ  are the crystal parameters, 

2

Xu  and 
4

Xu  have been 

derived by using statistical moment method in [6]. 

 To find free energy Xψ , we must calculate the integrals 
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2 1
2 42

2 1

0 0

,
X Xγ γ

X X X Xu dγ u dγ 
  

(A5) 

 By combining the equations (A3), (A4) and (A5) we have 
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(A6) 

 Thus free energy of interstitial alloy AB per atom with BCC structure can be simply given by 
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N
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(7) 

where Bc  is the concentration of interstitial atom B, N is the number of atoms in crystal, NB is is 

the number of atoms in crystal and Sc is the configuration entropy. In crystal, there are NB atoms B, 

2NB atoms A1, 4NB  atoms A2 and then the number of atoms A is N – (NB + 2NB + 4NB) = N – 7NB.  

 

 


