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Abstract: This paper presents the convolution for the offset linear canonical transform 

(OLCT) with the Gaussian weight and its applications. The product theorem is also 

studied. In applications, some ways to design the filters in the OLCT domain as well as 

the multiplicative filter and the Gaussian filter are introduced. 

Keywords: Reconstruction, Shannon theorem, convolution, filter, signal, offset linear 

canonical transform, fractional Fourier transform, Fourier transform. 

1. Introduction 

Throughout this paper we shall consider parameters 0 0, , , , ,a b c d u    and i  will be denoted the 

unit imaginary number. The Offset Linear Canonical Transform (OLCT) (see [1]) of a signal  f t  

with real parameters  0 0, , , , ,A a b c d u  , ( 1)ad bc   is defined as 
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The inverse OLCT expression is given by 

       1 1( ) ( ) ,A AA A
f t F u C F du t ut u    , (1.2) 

where  1

0 0 0 0, , , , ,A d b c a b du cu a       , and 

 
 2 2

0 0 0 02
1

2
cdu adu abi

C e
  

 . (1.3) 

In this paper, we only consider 0b   since the OLCT becomes a chirp multiplication operation 

otherwise. 

The OLCT is generalization of many operations, as follows: the Linear Canonical Transform 

(LCT), the Fractional Fourier Transform (FRFT), the Fourier Transform (FT). When 0 0 0u   , we 

back to the definition of the Linear Canonical Transform (see [2]). 

The Fractional Fourier Transform (FRFT) (see [3]) is considered a special case of the OLCT when 

parameters A  have the form  cos ,sin , sin ,cos ,0,0A      . For any real angle  , the FRFT is 

defined as 

   
2 2cot cot

2 sin 21 cot
( ) , sin 0

2

ut
i u ti

f u f t e dt

 


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 
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

  . (1.4)   

When the angle 
2


  , the FRFT becomes the Fourier Transform (FT) (see [4]). In this paper, we 

will use the Fourier Transform and its inverse defined by 

      : iut

FT f t f tu e dt   , (1.5) 

      
1

2

iut

FTf t f t u e du


   , (1.6) 

respectively. If 
1(, )f h L , the classic Fourier convolution operation in the time domain is 

defined as 

       *f h t f h t d    . (1.7) 

It is easy to see that 

       * * ,f h t f t h t       , (1.8) 

and 

             *FT FT FTf h t f tu u uh t   . (1.9)
 

• We also have the Young’s inequality (see [5]). If  pf L ,  qh L , and
1 1 1

1
p q r
   , 

 , , 1p q r  . Then the following inequality holds 

 
1*

r p q
f h C f h  , (1.10) 

where 1C is a positive constant. 
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Now we will exemplify some basic properties of A  (see [6]). 

Suppose  1f L , and ,  , we have 

• Time shift: 
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• Time shift/modulation: 
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• A  is a linear, continuous and one-to-one map from the Schwartz space  onto  (whose 

inverse is obviously also continuous). 

Let  0C  be the Banach space of all continuous functions on  that vanish at infinity and being 

endowed with the supremum norm 


 , and let 
1

1
: ( )

2
f f t dt


   be the norm in  1L . 

• (Riemann-Lebesgue type lemma for the OLCT). If  1f L , then  0A f C , and 

1

1

| |
A f f

b

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• (Plancherel type theorem for the OLCT). Let f  be a complex-valued function in the space  

 2L  and let 
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| |

, : ,A A
t k

f u k u t f t dt


  . 

Then, as k  ,  ,A f u k  converges strongly (over ) to a function, say  2

A f L , and, 

reciprocally, 

     1
| |

, : , AAt k
f u k C u t f t dt


   

converges strongly to  f u , where C  is the same as in (1.3). 

• (Parseval type identity for the OLCT). For any  2,f h L  the following identity holds 

, ,A Af h f h , 

where ,   is denoting the usual inner product in  2L . In the special case when h f , it holds 

2 2A f f . 

For convenience, we denote   0 0 2 2du b    ,  
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 . The OLCT (1.1) becomes 
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      
 

 
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2

b dud iuti u u
b b b

A A AF f t K e f t e dtu u

 
   

    . (1.11) 

There are many different types of convolutions for the OLCT. Most of them have the weight 

functions in the form 
 2i u u

e
 

 (see [1]). In [7], some convolutions for the FRFT with the Hermite 

weights in the form  
2i u

ne u  , and the Gaussian weight in the form 
2

2
1

2
u

i ue e


, are also obtained. In 

this paper, we focus on studying the convolution for the OLCT with the Gaussian weight in the form  
21

2
u

e


, and its applications. 

The paper is divided into two sections and organized as follows. In the next section, we provide 

the convolution for the OLCT with the Gaussian weight function and study its product theorem. Some 

special cases of this convolution are also deduced. 

2. Convolution for the OLCT with the Gaussian weight function and product theorem 

Definition 2.1. Let  1,f h L , the convolution for the OLCT of two signals  f t  and  h t   

with the Gaussian weight function  t  is defined by 

         1
( ) * * 2A Af h t K t f h t


  . (2.1) 

It easily seen that if  1,f h L  then     1f h t L  . Moreover,
1

1
12f h C hf   ,  

where 2C  is a positive constant. 

Theorem 2.1. Assume that 
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 with a set of parameters A , respectively. The factorization 

following identity is fulfilled 
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Proof. Based on classic Fourier convolution (1.7), the convolution (2.1) can be expressed as 
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By making s v bt     , we obtain  
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   2A f h u  . 

The proof is completed.   

Remark 2.1. Furthermore, using the fomula (1.8) the convolution (2.1) can also be rewritten as 

              1

2 2 * 2 * 2A Af h t K f t h tt t


  .  (2.4) 

Remark 2.2. In particular, if we chosse ( ) ( )h t t , where ( )t  is the Dirac delta function, we 

then have 

                 1 1 1

* 2 2 2 * 2A A A A Af t K f t K f t tt t
    .         (2.5) 

3. Applications 

3.1. The Gaussian filter in the OLCT domain. The Gaussian filter is of importance in the signal 

processing. In this subsection, based on the remark 2, the Gaussian filter in the OLCT domain will 

introduced. 



Q.T. Ha et al. / VNU Journal of Science: Mathematics – Physics, Vol. 35, No. 1 (2019) 47-54 

 

52 

The output signal  outr t  can be expressed as following 

          1

2 2 * 2out A A int tr K r t t


 . (3.1) 

The method to achieve the multiplicative filter in the OLCT domain through the convolution (2.1) 

is shown in Fig 1. 

In this following example, our objective is using the proposed filters to restore an observed signal 

     inr y nt t t   where    ,y t n t  denote the desired signal and the additive noise, respectively. 

Example 3.1. Let
2 1

, , 1, 3,0,0
7 7

A
 

    
 

,      
2 2

21
202 sin 1.5

t i t

inr e t et
 

   , 

   
221

2 sin 1.5
t

y t e t


  ,    
2

20i t
n t e


 , and the Gaussian function  

249

2
7 t

t e




  . 

      
27

2 * 2it

out intr e r t t
i

 . 

Then the results of Gaussian filter is given in Fig. 2 

 

 

Figure 1. The method to achieve Gaussian filter in the OLCT domain. 

 

Figure 2. Results of Gaussian filter achieve by using the convolution (2.1). 
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3.2. The multiplicative filter in the OLCT domain. In this subsection,  inr t  and  outr t  are denoted 

as the input signal and output signal, respectively. 

The output signal of OLCT can be obtained as following  

 

         
2

1

1

4

2 2

u

out in A in AA
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

    .    (3.2) 

Let    
21

2
u

A AHu ueH


 , since the OLCT-frequency spectrum is usually interested only in the 

region  1 2,u u , then the filter impulse response  h t  can be selected such that  A uH  is constant over  

 1 2,u u , and zero or rapid decay outside that region. In paticular, we then have 

      1 1 2, 2, 2
2

out A inA
t t

u
r r t u u u
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 

 
     

 
. 

Moreover,  AH u  can also be chosen equal the constant over  1 2,u u , and zero outside that 

region. Thus, we can get 
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2

1

1

4
1 2, 2, 2

2

u

out A inA
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u
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  
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 

 
      

 
. 

By denoting     
21

4

2 2

u

A in At
u u

E u e r H
    
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


 

 


,  the realization method is given by Fig.3. 

Therefore, when the OLCT becomes the LCT or the FRFT, it is easy to implement in the designing of 

multiplicative filters through the product in the OLCT domain (see [2]). 

 

Figure 3. The method to achive multiplicative filter in the OLCT domain. 
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