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Abstract: The year 2019 marks 45 years in the development of Deep Level Transient 

Spectroscopy (DLTS) - the signal processing method for determination of overlapping deep levels 

in semiconductors. From its introduction in 1974 by David Lang (D.V. Lang, J. Appl. Phys. 45, 

1974, p.3023) to this date the DLTS method has undergone many changes and modifications: 

some were purely theoretical speculations, some were to include new experimental arrangements 

and techniques. This paper provides a short review on DLTS data processing techniques, focusing 

on the main three approaches widely used today. We also summarize the contribution of our group 

in the Faculty of Physics, VNU University of Science. 
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1. Introduction 

Deep traps play important role in physics of materials but the characterization of those deep traps 

faced many difficulties until an introduction of Deep Levels Transient Spectroscopy (DLTS) by D. 

Lang in 1974 [1]. The method was new by its time, but appeared rather too late as the semiconductor 

industry seems to out-run its maximum output and role in the history. Later in 2001, the first DLTS 

equipment from Bio-RAD was installed in Center for Materials Science, Faculty of Physics, VNU-

Hanoi University of Science. This method allows the detection of overlapping deep centers by simple 

recording of capacitance transients according to time t in varying temperature T. Its success at the 

early time was unambiguous but later it shows a limiting accuracy and low overall resolution, together 

with high sensitivity to random noise. Since then, many improvements have been proposed but the 

method still struggles against low resolution until today. However, from the view point of data 

processing technique, this method is extremely interesting and appears useful in many other aspects of 

applied sciences, as it offers a practical solution to a very old problem of how to separate the 
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overlapping exponential functions, recall that the capacitance dependence on time as 
tenCetC


)( , 

where t is time, C a scaling constant and en so called an emission factor.  

By utilizing a double boxcar circuit to record the transient C(t), the author of [1] can obtain a 

signal of form S(T)=C(t1)C(t2). This function may be flat with no peak structure, but it can show 

maxima at certain temperatures if the deep traps occur. If one scans S(T) over several T then one can 

construct a plot of ln(e/T2) vs. 1000/T to determine the trap parameters (Fig. 1). 
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Fig. 1. The different settings of gate windows S(T)=C(t1)C(t2) at fixed T (right part) and the 

maxima of S(T)  at two fixed rate windows according to varying T (left part) [15]. 

Up to date, among the data processing techniques that have been reported [2-19], there are two 

that attracted application: the Fourier and the Laplace technique. Both do not have the rate windows, 

they measure rather one value of C(T) at one time (the sampling includes either 512 or 1024 measured 

points), and require only one temperature scan. Although the resolution and scan time were 

sufficiently improved, the accuracy and separability are still low, while strongly affected by noise 

(either thermal or random white noise). Also, as they do not involve any rate windows then the exact 

emission factors (obtained at the maximal gains) can not be calculated in advance. The 

correspondences between the peaks and the deep centers appear in the two methods somehow subtle 

and arbitrary. It is worth to mention that in the Lang's original approach the setting of rate window 

means the selection of emission factor for which the rate window reacts mostly. We briefly discuss the 

Lang's signal form in the section below. 

2. Lang's signal form 

A discussion of Lang approach in the language of the signal forms appeared in [15]. A common 

task of all spectroscopic methods is to find the analytic functions which transform the measured data 

(in our case, the transients CT(t) recorded at specific T) into the specific functions fn(T), whose peak 

structures (according to T in our case) can be analyzed. The fn(T) functions are usually referred to as 

the spectroscopic functions and the corresponding methods the spectroscopic ones. For C(t) the 

functions need to satisfy a condition of linearity, that is, the Arhenius plots [ln(e/T2) vs. 1000/T] 

obtained from the measured C(t) are linear. Here we call the fn(T) functions the signal forms. There is 

not known any spectroscopic signal forms other than the Lang's, Fourier and Laplace forms until the 

intervention of [15]. In general, the capacitance transient can be given as: 

                                                    
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where C0 is C(t=), C=Ci = C(t=0)C0 and i denotes the number of present deep traps.  

Now, let us denote normalized values of capacitance as Cn(t)=(C(t)C0)/C, and put t1=td, 

t2=t+d, for d is a half width of a gate window, then the Lang's signal can be given in the form: 

                         


 ])[/()()()(
)()( dtedte

inn
ii eeCCdtCdtCTS

  (2) 

If the traps are far from each other in the energy scale, then we can differentiate S(T) according to 

some emission factor ei, while leaving the other ej zeroed, to determine the signal maximal gain. 

Taking from [1] the maximum gain can be given using the variables t and d as follows: 

                                                          emax = ln[(t+d)/(td)]/2d (3) 

It is evident from eq. (3) that by providing t and d the emission factor emax is determined. 

3. Fourier DLTS 

The pre-historical idea how to obtain an optimal set of emission constants {i =1/ei , c0 and ci} 

from eq.(1) is to involve a least square technique. But this was not successful due to occurrence of 

false extremes. A correction of Lang's original technique comes from Weiss and Kassing in 1988, and 

a method is called the Fourier DLTS [4]. The Fourier DLTS is an integral method since it does not 

measure directly C(t) but a correlation integral R(t) with some periodical filter f(t) with period Tw: 

                                                       
wT

w

dtTtCtf
T

TtR
0

,
1

),(  (4) 

This integral passes through maximum at certain T when m(T) is equal to values preset by filter 

f(t). This signal sufficiently improves the accuracy, resolution and stability but among the 

disadvantages belongs the fact that it loses many important information containing in C(t, T), so the 

radical improvement is limited. We know from the definition of the Fourier series that, a differentiable 

continuous real and periodical function c(t) having period Tw (i.e. c(t) = c(t+nTw) with all n=0,1,2...) 

can be decomposed into a Fourier series: 
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an , bn are the Fourier coefficients: 
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In case the c(t) is a complex function, the complex coefficients cn are defined as: 
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And there is a relation between cn and an, bn: 
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                                                         nnn ibac 
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For the discrete Fourier analysis, c(t) has only N particular values c(tk) , k=0,1,..., N in a period Tw, 

and the integral (8) becomes: 
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And there is an empirical dependence between the coefficients Fn and their complex counterparts cn: 

                                                                    
D

nn NcF   (11) 

where D is an empirical real constant. The equation (11) is of great importance for the Weiss and 

Kassing method because it allows to calculate cn on the basis of N measurements c(tk). 

Now look at the integral output 
wT

w

dttCtf
T

tR
0

)()(
1

)(  of the signal C(t) and we see that: 

- the integral output R(t) plays a role of the Fourier coefficients cn ;  

- the filter f(t) has the form 

2

w

i nt
T

e




with period Tw.  

With this intuition, the involving of Fourier series in DLTS becomes clear. The basic procedure is 

as follows:  

a) at some specific T, measure N values of C(tk) for various times tk = kk1.  The 

period of C(t) will be Tw = Nt.  Now find R(tk) for each C(tk).  

b) suppose that c(t) follows the exponential decay and c(t) is a real function; let the filter f(t) be 

nt
T

i
we

2


we can calculate the Fourier coefficient an , bn and cn. 

c) now suppose C(tk) = c(tk) and we calculate Fn and cn according to (11) and find the experimental 

values of an and bn 

d) by comparison of theoretical and experimental values an and bn we can find  at a given T and a 

trap concentration NT. 

e) now by repeating the steps (a), (c) and (d) one can find all possible (T). At the final, one can 

build the Arhenius plots and determine the activation energy ET.  

The Fourier method requires only one temperature scan, the time can be determined directly 

from the experimental coefficients an and bn measured at each T. In the Lang's approach, one must first 

fix the rate-windows then scan T and in the Fourier DLTS, one first fix T then scan all rate-windows 

(512 or 1024 measurements) to find . Suppose we have one trap center emitted according to the 

exponential law: 
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The Fourier coefficients are determined as: 
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So we have: 
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By dividing an and bn for each other, we have several ways to calculate : 
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In the Fourier DLTS the four values (a1, a2), (b1, b2), (a1, b1) and (a2, b2) are mostly used and 

among them the (a1, b1) is usually most correct. With n=1 we have a simple relation between a1, a2, 

b1 and b2. This relation can be used to check whether or not the measured coefficients (a1, a2, b1, 

b2)MEAS do follow the exponential law of emission: 
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If (20) does not hold so the emission is probably caused by overlapping centers. 

4. The algebraic structure of reference levels 

It seems unobserved from the first time of DLTS that the right part of equation (3) is almost equal 

to 1/t numerically. One can easily prove that ln[(t+d)/(td)]/2d really converges to 1/t when the half 

width of the rate windows d 0 by using the Euler number definition en n

n



)/11(lim . By giving 

that ln[(t+d)/(td)]/2d ~ 1/t, the emax corresponds to Cn(t)=e1 (Fig. 2). For this reason Cn=e1 is called 

a reference level of S(T). Now consider a moving of gate from t to t'=at, the emission factor changes 

as  ei(t') = ei(at) = 1/at = (1/a)ei(t).  Thus, the transient associated with gate t' will have at time t an 

emission factor equal to that of the transient associated with gate t at time t/a: 
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Fig. 2. A reference level: a rate window [td, t+d] shows a maximum according to T when the 

Cn(t) decreases through a point Cn(t)~1/e=0.368 [15]. 

So a modified Lang's signal, to be called a signal of order a, can be given as: 

                                                 S(T)[a] =Cn(td)1/aCn(t+d)1/a  (21) 

which produces a maximal output along a reference level Cn=ea. The S(T)[a] forms a class of 

signals, which is referred to as a Lang's signal class. Evidently, emax{S(T)[a]}= a ln[(t+d)/(td)]/2d = 

aemax{S(T)[1]} = a/t. This signal class associates each point X [y=ea, x=t] with one horizontal line 

(y=ea) and one vertical line (x=t). It is obvious that: 

                                                ei(a,t)= aei(1,t)= ei(1,t/a) (22) 

                                                ei(a,t)n= anei(1,t)n=anei(1,tn)= ei(a
n,tn)=ei(1,(t/a)n) 

This tells us about the equivalence of all techniques involving the double boxcars. We can check 

ref. [15] to reveal the following relations: 

[ei(a,t)+ei(b,t)] = ei(a,t)+ei(b,t)= aei(1,t)+bei(1,t) = a+b)ei(1,t) = ei((a+b),t)  (23) 

[ei(a,tn) ei(b,tm)] = ei(a,tn) ei(b,tm)= 

                                                   = aei(1,t)n bei(1,t)m=(ab)ei(1,t)n+m= ei{(ab),tn+m)} (24) 

5. The signal classes and forms 

We summarize two classes of signal forms, a Gaussian and a Poisson class (to the later S(T)[a] 

reduces as a special case), which possess the algebraic structure as that of S(T)[a]. These classes are 

summarized in Table 1, where the last column shows the maximal pseudo-random noise level (in % of 

maximal signal) that does not disturb emax values more than 5%. As mentioned in ref.[15], among the 

unitary signal forms, the Poisson signals (derived from the Poisson distribution) are most accurate. 

The Gaussian forms are also good but are also more sensitive to noise. Both classes are of ea 

reference level with emax=a/t. Fig. 3 compares some of them with a classic Lang's form (middle quality 

signals). It is worth to note that at each T when the C(t) is recorded, the time t where C(t) crosses the 

horizontal line C=ea determines e(T)=a/t. So a repeated scanning of C(t) over the whole temperature 

range is not needed. The existence of unitary signal forms itself is a surprising fact.  
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Fig. 3. Comparison of some selected signal forms to a classical Lang's S(T) form for a sample with 

one trap E=0.44eV. 

Table 1. The finit element signal classes: signal forms,  their emax and reference levels [15] 
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6. Averaging functions 

     We now discuss the averaging functions, as the increase of accuracy and separability of all 

transient-processing methods depends a lot on filtering noises. At recent time, the resolutions of all 

applicable DLTS methods are quite limited. This is why they cannot be utilized in other important 

areas of experimental physics, such as in high energy physics, astronomy and related areas, although 

high demands are seen for accurate analysis of transients. 

6.1. Time averaging functions: the correlation of signals at fixed T 

The correlation integrals at a fixed variable are equivalent to averaging according to this variable 

[17]. There are several simple correlation functions that can be easily derived. Let  be a period width, 

the cross-correlation of Cn(t) and 1/Cn(t) becomes: 
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It is interesting that the autocorrelation of L(t) is pretty simple: 
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And the autocorrelation of  L(t)/t can also be obtained straighforward: 
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One may also check that a cross-correlation between L(t)-1/t and 1/L(t)-1/t is always 1: 
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These results are very interesting and useful as they show how the emission factors can be 

calculated as the averaging functions. 

6.2. Temperature averaging functions: the correlation of signals at fixed time 

To filter the thermal noise, let us write 
T-2 /eTt-e(T)nC
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A cross-correlation between M(T) and 1/M(T) is: 
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Now substitute x=1/T, x1=1/T1, x2=1/T2, x=x2-x1 and denote A=(1/x)Ln(x1/x2), 

B=1/(x1x2)we have a result by solving eq. (29): 
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The  is a temperature shift in the unit of 1/T. The correlation function directly determines the 

activation energy of deep level. 

6.3. Temperature shift operator Cn(Tp) = Tp[Cn(T)] 

Let Cn(T) be a normalized capacitance signal at certain gate t . Denote L(T) = Ln[Cn(T)] and 

M(T) = Ln[-Ln(Cn(T))]. According to temperature, the shift operator Tp moves Cn(T) onto 

Cn(Tp), for p is a real positive constant: Cn(Tp) = Tp[Cn(T)].  

By dividing Cn(Tp) by Cn(T) we can arrive at [17]: 
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Similarly, we can obtain 
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So an arbitrary shift from L(T) to L(Tp)determines a energy constant significant within this 

temperature segment. Ref. [17] shows that not only  but also  can be detected via the shift 

operators.  

7. Vibrated boxcar technique 

In this section we describe a measurement system which monitors the capacitance transient signals 

C(t) at the preset T by a variable multiplicator - a vibrating boxcar. The main idea bases on a single 

boxcar which instead of being fixed at certain position, vibrates with some preset frequency.  

If we now imagine the decreasing of the capacitance signal over time t through a region [td, 

t+d]  when the gate - set up before at a central position t vibrates with amplitude d, than the result C 

from a multiplicator circus should lie in the range [C(t-d), C(t+d)] (see Fig. 4). Giving t, d and 

by measuring C, the emission factor e(T) can be deduced directly without a repeated scan of 

temperature. 

Let t be a preset time around which the gate vibrates with an amplitude d and with certain 

frequency F. When a transient signal decreases according to t, it crosses a gate at some position lying 

in a range [C(t-d), C(t+d)]. However the exact occurrences depend on frequency F. If F is large 
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Fig. 4. The occurrence of the transients when the gate vibrates with various frequencies. When the 

frequency was set large enough compared to a proper relaxation time then the whole band of 

transient is recorded. Otherwise at lower vibrating frequency only some segments of transient falls 

within a gate vibration interval.  

enough in comparison with a proper relaxation time of the transient, then the recorded values should 

fill a whole band [C(t-d), C(t+d)]. If F is comparable to a relaxation time then only several 

occurrences should be recorded and if F is too small then no point could be recorded. We now 

consider only a case where the whole band [C(t-d), C(t+d)] is fulfilled with the transients. In 

general the emission factor depends on temperature according to a relation: 

                                                       )exp(2
0

kT

E
Tee    (33) 

where e0 is a pre-factor depending on level concentration and capture cross section, E is the 

activation energy and k is Boltzmann constant. In term of e the capacitance transient C(t) reads: 

                                                   )exp()( 0 etCCtC    (34) 

A standard signal is defined as: 
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And by scaling S(T) on C and removing exp(et) out of the brackets we have                                         
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   we have finally: 

                                                                 etTs )(   (36) 

     Providing that d is preset the  is always a constant, the s(T) signal can be obtained by setting: 

                                                                 s(T) = Cmax Cmin  (37) 

Note that the relation (37) holds only if the vibration frequency F is large enough in comparison 

with a proper relaxation time of the transient. By varying time t, the line (36) can be constructed and 

its slope reveals an emission factor e at the preset temperature T. Repeat the process according to 

temperature T and construct an Arhenius plot for determination of activation energy E. This method 
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requires only one temperature scan and among advantages it does not require a temperature step to be 

set too fine as for other methods. In general, it needs only 5 temperatures to be maintained, so the 

measuring time is greatly shortened. The temperature step can be set as large as the whole temperature 

band divided by 5. The sensitivity of this method is strongly correlated with vibrating frequency. The 

method is resistible to the occurrence of random noise, since the statement (37) is already averaged so 

is not very much affected by the random noise. 

9. Conclusion 

Although many algorithms have been involved in the industrial manufacturing of DLTS 

equipments such as in the Fourier BIO-RAD DL5000 systems, the development is still going on to 

improve further the resolution of the method. The newest studies promise more sensibility and faster 

measurement process while providing more complex outputs and enhancement of ability of the 

method. 
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