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Abstract: In this paper, the index-1 notion for arbitrarily switched discrete-time linear singular 

systems (SDLS) has been introduced. Based on the Bohl exponents of SDLS as well as properties 

of associated positive switched systems, some necessary and sufficient conditions have been 

established for exponential stability.  
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1. Introduction 

Recently there has been a great interest in arbitrarily switched discrete-time linear singular systems 

due to their importance in both theoretical and practical aspects, see [1- 4], and the references therein. 

Consider a switched system consisting of a set of subsystems and a rule that describes switching among 

them. It is well known that, even if all linear descriptor subsystems are stable but inappropriate switching 

may make the whole system unstable. On the other hand, since abrupt changes in system dynamics may 

be caused by unpredictable environmental factors or component failures, it is important to require the 

stability for some real-life switched systems under arbitrary switching. It should be noted that although 

there are a few works devoted to stability analysis of SDLS, see [1, 3-5], to our best of knowledge, the 

problem of investigating the stability for such switched systems via their Bohl exponents or properties 

of associated positive switched systems has not yet been studied before. Thus, this work was intended 

as an attempt to fill this gap. 

2. Switched discrete-time linear singular systems of index-1 

Consider the following autonomous SDLS of the form: 

________ 
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( 1) ( )( 1) ( )k kE x k A x k     (1) 

where : N {0} : {1,2,.., }, N,NI N N is a switching signal taking values in the finite set NI ; 

, Rn n

i iE A  are given matrices, and ( ) Rnx k  are unknown vector for al Nk . Suppose that the 

matrices iE are singular for all 1,2,..,i N . 

We remark that in some works on SDLS [4, 6], instead of (1), a simpler system of the form 

( ) ( )( 1) ( )k kE x k A x k   , 

can be considered. Moreover, all the techniques developed in this paper can easily be applied to the 

above mentioned SDLS. 

Definition 1  System (1) is called an arbitrarily switched singular system of index-1 (shortly, index-

1 SDLS) if it satisfies the following conditions 

(i) rank iE r n  ; 

(ii) ker {0} ,ij iS E i j   , where 
1(Im ) { : Im }ij i j i jS A E A E    . 

From condition (ii) in Definition 1 we show that 

ker R , {1,2,.., }.n

ij iS E i j N     

Indeed, put Im Imij i jW A E  . Then consider linear operators :ij ij ijT S W , defined by ,ij ijx AT x  

we can easily show that ker kerij iT A . According to [7] we have 

dim dim dimker dim dimker .ij ij ij ij iS W T W A   
 

On the other hand 

dim dim(Im Im )

dimIm dimIm dim(Im Im ).

ij i j

i j i j

W A E

A E A E



  




 

From last the relation we get 

dim dimIm dimIm dim(Im Im ) dim(ker )

dim(Im Im ).

ij i j i j i

i j

S A E A E A

n r A E

   

   


 

This relation shows that dim .ijS r Moreover, from condition (ii) in Definition 1 we have 

dim ijS r . Hence dim ijS r , i.e., ker Rn

ij iS E  . 

Define the matrix 
1 1{ ,..., , ,..., }r r n

ij ij ij i iV s s h h , whose columns form bases of 
ijS and ker iE , 

respectively, and diag( , )r n rQ O I  , -nP I Q . Here rO is the r r zero matrix and mI stands for the 

m m identity matrix. 

Then the matrix 
1

ij ij ijQ V QV   defines a projection onto ker iE along 
ijS and 

ij n ijP I Q  is the 

projection onto 
ijS along ker iE . 

Using similar arguments as in [8-11] we can prove the following results. 

Theorem 1 For index-1 SDLS (1), the following assertions hold. 

(i)  
1

ijk j i ij jkG E AV QV   is non-singular for all , , {1,2,.., }i j k N ; 
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(ii) 
j jk jE P E ; 

(iii) 
1

jk ijk jP G E ; 

(iv) 
1 1

jk ijk i ijV G AV Q Q   . 

Proof.  

(i) Assume that ker ijkx G , we have 0 ijkG x 
1( )j i ij jkE AV QV x  1

j i ij jkE x AV QV x .Then 

1

j i ij jkE x AV QV x  , thus 
1

,ij jk i jV QV x S  . Furthermore, 
1

ij jkV QV x  1 1

ij ij ij jkV QV V V x   1 kerij ij jk iQ V V x E  . 

Since ker {0}ij iS E  we get 
1 0ij jkV QV x  , thus 

1 0j i ij jkE x AV QV x   , hence ker Imj jkx E Q  , i.e., 

jkx xQ . On the other hand, from the relation 
1 1 0jk jk ij ij jkQ x V V V QV x   , we have 0jkx Q x  . It 

means that ker {0}ijkG  , i.e., the matrix 
ijkG is non-singular. 

(ii) Since 
jkQ is the projection onto ker jE then we have 0j jkE Q  , i.e.,  

( )j j jk jk j jkE E Q PEP  
. 

(iii) From relation 
ijk jkG P 

1 1( )j i ij jk jk jkE AV QV V PV   1

j jk i ij jk jE P AV QPV E  , we get 

1 .jk ijk jP G E  

(iv) From formula of 
1

ijk j i ij jkG E AV QV   we have 
ijk jk j jk i ijV VG E AV Q  , thus

i ij ijk jk j jkVAV Q G E V  . 

The last assertion follows from relations: 
1 1 1 1

1 1 1

1

( )

.

jk ijk i ij jk ijk ijk jk j jk

jk jk jk ijk j jk

n jk jk jk

V G AV Q V G G V E V

V V V G E V

I V P V

Q

   

  



 








 

Theorem 1 is proved.  

Using items (iii), and (iv) of Theorem 1, we get 

 
1

1 1: ;ijk

ijk jk ijk i ij

n r

A O
A V G AV

O I

 



 
   

 

 (2) 

1 1:
r

ijk jk ijk j jk

n r

I O
E V G E V

O O

 



 
   

 

. 

Theorem 2 The index-1 SDLS (1) has a unique solution with 0(0) Rx x  if and only if 
0 (0) (1)x S 

, i.e., the initial condition 0x is consistent. In this case, the following solution formula holds. 

1

( ) ( 1) ( 1) ( ) ( 1) (0) (1) (2) (0) (1)( ) ... (0).k k k k kx k V A A V x         



    

Proof. 

Multiplying both sides of system (1) by 
1 1

( 1) ( 2) ( ) ( 1) ( 2)k k k k kV G    

 

    , and using the transformation 

1

( ) ( 1)( ) ( )k kx k V x k 



 , we get 



P.T. Linh / VNU Journal of Science: Mathematics – Physics, Vol. 34, No. 4(2018) 77-84 80 

                                                 ( ) ( 1) ( 2) ( ) ( 1) ( 2)( 1) ( ).k k k k k kE x k A x k                                        (3) 

Putting ( ) : ( ( ) , ( ) )T T Tx k v k w k , where ( ) R rv k  , ( ) Rn rw k  , we can reduce system (3) to the 

following systems 

 
1

( ) ( 1) ( 2)( 1) ( ),

( ) 0.

k k kv k A v k

w k

   
  



 (4) 

System (4) has the solution 

1 1

( 1) ( ) ( 1) (0) (1) (2)( ) ... (0),

( ) 0,

k k kv k A A v

w k

      


 

hence the solution of system (1) can be written as 

( ) ( 1)

( ) ( 1)

( ) ( 1) ( 1) ( ) ( 1) (0) (1) (2)

1

( ) ( 1) ( 1) ( ) ( 1) (0) (1) (2) (0) (1)

( ) ( )

( )

( )

(0)
...

0

... (0).

k k

k k

k k k k k

k k k k k

x k V x k

v k
V

w k

v
V A A

V A A V x

 

 

       

         





  



  



 
  

 

 
  

 



 

3. Stability of linear switched singular systems of index-1 

Suppose that system (1) is of index-1 and the initial condition 0x  is consistent. 

Definition 2 System (1) is called exponentially stable if there exist a positive 

constant  and a constant 0 1  such that such that for all switching signals and all solutions x of (1) 

the following inequality holds 

0( ) 0.kx k x k    

3.1. Bohl exponents and exponential stability 

To define Bohl exponent for system (1), we first construct the so-called one-step solution operator 

( , 1)k k  from  1x k  to x(k). 

( ) ( 1)

( ) ( 1)

( ) ( 1) ( 1) ( ) ( 1)

1

( ) ( 1) ( 1) ( ) ( 1) ( 1) ( )

( ) ( )

( )

( )

( 1)

( 1).

k k

k k

k k k k k

k k k k k k k

x k V x k

v k
V

w k

V A x k

V A V x k

 

 

    

      





  



   



 
  

 

 

 

 

Then put ( 1) ( ) ( 1)( , 1) : k k kk k       
1

( ) ( 1) ( 1) ( ) ( 1) ( 1) ( )k k k k k k kV A V      



     we get the following 

one-step solution operator 
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( ) ( , 1) ( 1).x k k k x k     

Hence we can define the state transition matrix as 

( 1) ( ) ( 1) ( ) ( 1) ( 2)( , ) : ... , 0.i i i j j ji j i j                

Definition 3 Assume that system (1) is of index-1 and ( , )i j is the state transition matrix. Then 

Bohl exponent for system (1) is defined as follows: 

inf{ R : : ( , ) . , , 0}.i j

B w ww M i j M w i j        ‖ ‖  

To show the existence of Bohl exponent B for system (1) we will prove that the 

set 

{ R : : ( , ) . , , 0},i j

w wS w M i j M w i j        ‖ ‖  

is non-empty and bounded from below.  

Indeed, from the formula 
1, , , {1,2,.., },ijk jk ijk ijV A V i j k N   we see that the set of matrices 

ijk is 

finite, then there exists a positive constant 0  such that 

, , {1,2,.., }
max .ijk

i j k N



 ‖ ‖  

Thus we obtain that 

( , ) , , 0,i ji j i j      ‖ ‖  

hence S  . Besides, for all w S we have 0w  . It follows that the set S is non-empty and 

bounded from below. 

Lemma 1 Assume that system (1) is of index-1 and ( , )i j is the state transition matrix. Then 

 
1

limmax ( ,0) .i
B

i
i





 ‖ ‖  (5) 

Proof. 

We carry the proof of Lemma 1 in 3 steps. 

Step 1.We show the existence of the limit in (5) 

Put max ( ,0)ia i


 ‖ ‖ . Then we have 
i j i ja a a  for all , 0.i j  According to Polya-Szego [12] 

we obtain that 
1

lim i
i

i
a


exists. It means that the limit in (5) exists. 

Step 2.Put 
1

1 limmax ( ,0) .i

i
i





 ‖ ‖ We prove 1 B  .  

Since infB S  then for all 0 there exists w S such that Bw   , i.e., there exists 
wM

such that 

( ,0) ( ) , , 0.i j

w Bi M i      ‖ ‖  

It follows 

1

limmax ( ,0) .i
B

i
i





  ‖ ‖  

Then we have 
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Step 3. We prove 1B  .  

From the definition of 1 , for all 0 there exists T >0 such that  

1

1| | , ,i
ia i T     

i.e., 

1( ,0) ( ) , , .ii i T       ‖ ‖ (6) 

We will show that there exists M 0 such that 

 1( , ) ( ) , ,i ji j M i T       ‖ ‖ . (7) 

Indeed, when i j T  , for every   we always have switching signal *  such that 

*( , ) ( ,0)i j i j 
   . Hence we have 

* 1( , ) ( ,0) ( ) , , .i ji j i j i j T 
          ‖ ‖ ‖ ‖  

When i j T  , we have the following estimate 

1

1

( , ) ( ) .

i j

i j i ji j


 





  
    

 
‖ ‖  

Choosing 
1

max{1, }

T

M




 
  

 

, we get the inequality (7). It means that 

1B  . 

Thus we obtain 1B  . 

Lemma 1 is proved.  

Theorem 2 An index-1 SDLS (1) is exponentially stable if and only if 1B  . 

Proof. 

Necessity.Assume that system (1) is exponentially stable. It follows that there exist a positive 

constant M 0 and 0 1  such that 

( , ) , 0.i ji j M i j        

Thus, 1B  . 

Sufficiency. Assume that 1B  . Then there exist 0 and M 0 such that 

1B    and ( , ) , 0.i ji j M i j       It shows that system (1) is exponentially stable. 

Theorem 2 is proved. 

3.2. Stability of positive linear switched singular systems of index-1 

In this Subsection, we investigate the stability of index-1 SDLS satisfying some positivity 

condition. Let 1 2: { ( , ,..., ) , 0}T

r ix x x x x   be a positive octant in Rr , ( )Int be the interior of . 

Consider an order unit norm .
u
, defined in [13], [14], and the corresponding order unit space 

(R , , . ).r

u‖ ‖  
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Theorem 3 Assume that the matrices 
1

ijkA , determined by (2), are positive definite, and there exists 

a vector ˆ ( )v Int such that 
1ˆ ˆ ( )ijkv A v Int P  for all , ,i j k . Then system (4) is exponentially stable, 

hence system (1) is also exponentially stable. 

Proof.  

Since 
1ˆ ˆ ( )ijkv A v Int P  then there exists a ˆ(0, )ijk uu  ‖ ‖ such that the closed ball 

1ˆ ˆ[ , ]ijk ijkB v A v   . Since 1 1ˆ ˆ ˆ ˆ ˆ[ , ]
ˆ

ijk

ijk ijk ijk

u

v A v v B v A v
v


   

‖ ‖
we get 1ˆ ˆ ˆ 0

ˆ

ijk

ijk

u

v A v v
v


  

‖ ‖
. Let 

(0,1)
ˆ

ijk

ijk

uv


 
‖ ‖

, then 
1 ˆ ˆ(1 )ijk ijA v v  .  

Put inf{ , , , {1,2,..., }}ijk i j k N  , we obtain 
1 ˆ ˆ(1 )ijkA v v  for all , ,i j k . Using the positive 

definiteness of matrices 
1

ijkA and the monotonicity of ˆ
uv‖ ‖ we get 

ˆ

1 1

( 1) ( ) ( 1) (0) (1) (2) (R , . )

1 1

ˆ( 1) ( ) ( 1) (0) (1) (2)

1 1

ˆ( 1) ( ) ( 1) (1) (2) (3)

1 1

ˆ( 1) ( ) ( 1) (1) (2) (3)

ˆ

...

ˆ...

ˆ... (1 )

ˆ(1 )

...

...

ˆ(1 )

r
v

k k k

k k k v

k k k v

k k k v

k

v

A A

A A v

A A v

A A v

v

     

     

     

     

 

 

 

 

 

 

 

‖ ‖
‖ ‖

= ‖ ‖

‖ ‖

‖ ‖

‖ ‖ (1 ) .k 

 

According to [15], system (4) is exponentially stable. It follows that there exist finite positive 

constants 0 1  and 0  such that 

( ) (0) .kv k v‖ ‖ ‖ ‖  

Furthermore since the corresponding solution of system (1) is ( ) ( 1)( ) ( ( ) ,0)T T

k kx k V v k   ,we have 

( ) ( 1)

( 1) ( ) ( 1) ( ) ( 1)

1

( ) ( 1) (0) (1)

1

( ) ( 1) (0) (1)

( ) ( ( ) ,0)

( (0) ,0)

(0)

(0) .

T T

k k

k T T

k k k k k

k

k k

k

k k

x k V v k

V D V v

V V x

V V x

 

    

   

   









  

















‖ ‖

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖

‖ ‖ ‖ ‖ ‖ ‖

 

Putting 1

, 1,2,..,
max ij ij

i j N
V V  


 ‖ ‖ ‖ ‖ , we have 

The last relation shows that the solution of system (1) is exponentially stable. 

Theorem 3 is proved. 

Example 1 Put 

1 2

2 3 0 3 2 0

0 2 0 , 1 6 0 ,

0 0 0 0 0 0

E E

   
   

    
   
     
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1 2

1 1 0 2 1 0

0 1 0 ,

1

1 2 1 ,

0 0 1 0 0

A A

   
   

    
   
   

  

11 12

1 0 0

0 0

0 0 1

1 3V V

 
 

   
 
 

,    
21 22

2 0 0

0 2 0

0 0 1

V V

 
 

   
 
 

. 

We calculate the matrices , , , {1,2}ijkA i j k as 

111 112

0

0 0

0 0 1

1 2 1 12

1 2A A

 
 

   
 
 

,   
121 122

3 16 1 12 0

0

0 0

1 6

1

1 4A A





 
 

   
 
 

, 

211 212

7 8 1 3

1 4

0

0

0 0 1

1 6A A

 
 

   
 
 

,   
221 222

5 8 1 8

1 16

0

0

0 0 1

5 16A A

 
 

   
 
 

. 

Clearly all the matrices ijkA are positive definite. We choose ˆ (9,3) ( )Tv Int   and find that 

1ˆ ˆ
ijkv A v are also inside ( )Int . It means that this system satisfies all the condition of Theorem 3, thus 

it is exponentially stable. 
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