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Abstract: This paper presents the investigation on the buckling of three-phase orthotropic 

composite plates used in shipbuilding subjected to mechanical loads by analytical approach. The 

basic equations are established based on the Classical Plate Theory. The analytical method is used to 

obtain the expressions of critical loads of the three-phase composite plate. The results in the article 

are compared to the results obtained by other authors to validate the reliability of the present method. 

The effects of fiber and particle volume fraction, material and geometrical parameters on the critical 

load of three-phase composite plates are discussed in detail. 
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1. Introduction 

Composite is a material composed of two or more component materials to obtain better properties 

compared to other regular materials [1, 2]. Therefore, composite materials are widely used in all fields:  

power, aviation, construction, shipbuilding, civil and medical fields.... 

In addition to advantages of composite material such as: nonreactive with environment, 

lightweight, durable in corrosive environment, it also has disadvantages: easily permeable, flammable 

features [2, 3] and low level of hardness. 

In the shipbuilding industry, nowadays small and medium-sized patrol boats, cruise ships, and 

fishing boats are mainly made from composite material. In order to increase the waterproofing, fire-

retardancy and the hardness of the material, besides the fiber reinforcement usually added  reinforced 

particles to the reinforced polymer matrix [4, 5]. In fact, there are actually three-phase composites: 

polymer matrix, reinforced fiber and particles. 
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Adding reinforced particles to the polymer matrix, the mechanical properties of plate and its shell 

structure will vary (effect on tensile, bending and impact strength) [5]. Therefore, it is necessary to 

control the effect of the ratio of component phases to the durability of the structure while still meeting 

the desired criteria such as waterproofing or fire-retardancy [6-8]. 

Plate, shell and panel are the basic structures in engineering and manufacturing industry. These 

structures play an important role in mainly supporting all structures of machinery and equipment. 

Buckling of composite plate and shell is first and foremost issue in optimal design. In fact, many 

researchers are interested in this issue [6-13]. Therefore, research on three-phase composite plate and 

shell is crucial in both science and practice. 

In fact, most composite materials currently used in shipbuilding have a orthotropic configuration. 

The paper introduces a study on the buckling of three-phase orthotropic composite plates used in 

shipbuilding by analytical methods. This paper approaches in the direction of critical load expressions. 

The effect of fiber, particle, material and geometry characteristics on the critical load of composite three-

phase plates is discussed in detail. The results calculated according to the approach in the paper, compared 

with the results obtained by other authors in the possible cases to test the reliability of the method. 

2. Determining elastic modulus of three-phase composite 

Three-phase composite has been proposed for study and solve scientific problems posed by 

methods in [6,7,14-16], i.e. solved step by step in a two-phase model from the point of view described 

by the formula: 

1𝐷𝑚 = 𝑂𝑚 + 1𝐷 (1) 

First step: considering 2-phase composite including: initial matrix phase and filling particles, 

composite are considered identical, isotropic and have 2 elastic coefficients. The elastic coefficients of 

the Om composite are now called composite assumptions. 

Second step: determining the elastic coefficients of composite between the assumed matrix and 

reinforced fibers. 

Assuming composite components (matrix, fiber, particle) are all identical, isotropic, then we will 

denote Em, Gm, m, ψm; Ea, Ga, a, ψa; Ec, Gc, c, ψc respectively as elastic modulus, Poisson's ratio and 

component ratio (according to volume) of matrix, fiber, particle. From here on, matrix-related quantities 

will be written with the index m; fiber-related quantities will have index a and index c for particle. 

According to Vanin and Duc [17],  elastic modules of assumed composite are received as follows: 
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G, K  : Shear elastic modulus và bulk modulus of  assumed matrix.
 

 are calculated from  as follows: 
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The elastic modulus of three-phase fiber-reinforced composite selected is determined according to 

the formulas of Vanin  [18] with 6 independent coefficients as follows: 
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3. Governing equations 

The main differential equation for buckling analysis of orthotropic plates (Appendix A) is: 

𝐷11
𝜕4𝑤0
∂x4

+ 2(𝐷12 + 2𝐷66)
𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

+ 𝐷22
𝜕4𝑤0
∂y4

= 𝑁𝑥
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3.1. The buckling of three-phase orthotropic plate subjected to biaxial compression 

In case, a rectangular orthotropic plate is subjected to a uniform compression on each edge with 

the respective force of  𝑁𝑥 = −𝑁0 and 𝑁𝑦 = −𝛽𝑁0, without horizontal load (7) becomes: 

𝐷11
𝜕4𝑤0
∂x4

+ 2(𝐷12 + 2𝐷66)
𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

+ 𝐷22
𝜕4𝑤0
∂y4

= −𝑁0
𝜕2𝑤0
𝜕𝑥2

− 𝛽𝑁0
𝜕2𝑤0
𝜕𝑦2

 
(

8) 

Where:  

w0: is displacement in z direction of the plate 

N0: Axial compressive force per 1 unit of plate's length. 

Dij (i, j = 1,2,6): is the bending stiffness of the plate.  

(𝑄𝑖𝑗
′ )

𝑘
: Hardness coefficient of the kth layer. 

zk: is the distance from the middle surface of the plate to the bottom of the kth layer. 

In this study, the edges of composite plates are assumed to be single supported: 

At 𝑥 = 0 and 𝑥 = 𝑎:  𝑤0 = 𝑀𝑥 = 0;              (9)      

At 𝑦 = 0 and 𝑦 = 𝑏:  𝑤0 = 𝑀𝑦 = 0 ;           (10) 

The boundary conditions (9) and (10) are always satisfied when the deflection function is in the 

form: 

w0(x, y) = Amn sin
mπx

a
sin

nπy

b
                                                                  (11) 

Introducing (11) into (8) and solve the equation for the following solution: 

𝑁0 =
𝜋2[𝐷11𝑚

4 + 2(𝐷12 + 2𝐷66)𝑚
2𝑛2𝑅2 + 𝐷22𝑛

4𝑅4]

𝑎2(𝑚2 + 𝛽𝑛2𝑅2)
 

(12) 

Where: 

𝑅 = 𝑎/𝑏: ratio of length / width of plate 
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𝑅𝑄 = 𝐸22/𝐸11: ratio Young's modulus 

𝑅𝑒 = 𝑒0/𝑒90: ratio of total thickness of layer 00 / total thickness of layer 900. 

𝑒 = 𝑒0 + 𝑒90: thickness of plate. 

n: number of layers (only for formula no. 13) . 

E11, E22, ν21, G12: are the coefficients of three-phase composite material determined by the formula 

(6). 

Put expressions E11, E22, ν21, G12 in (6) into (13), then put into expression (12), We get the N0 force 

value depending on ψa, ψc, a/b and e, respectively the volume ratio of fiber, particle and geometric 

dimensions of plates: 

𝑁0 = 𝑁(𝜓𝑎 ,𝜓𝑐 ,𝑎/𝑏,𝑒)

=
𝜋2 [(𝑃1 + 1)𝑃2𝑚

4 + 2(𝜈21𝑃2 +
𝑒3

6
𝐺12)𝑚

2𝑛2𝑅2 + (
𝐸22

𝐸11
− 𝑃1)𝑃2𝑛

4𝑅4]

𝑎2(𝑚2 + 𝛽𝑛2𝑅2)
 

    
(14) 

Where:  

Put:  𝑃1 = (𝑅𝑄 − 1)𝛼 = (
𝐸22

𝐸11
− 1)𝛼  and   𝑃2 =

𝑒3

12

𝐸11

1−𝜈12
2 𝑅𝑄

=
𝑒3

12

𝐸11

1−𝜈12
2 𝐸22
𝐸11

 

The equation (14) is the basic equation with the variables: ψa, ψc, 𝑎/𝑏 and e used to study the 

buckling of the three-phase orthotropic plate under biaxial compression. 

The critical force corresponds to the values of m and n making No smallest. With 𝑚 = 𝑛 = 1, the 

expression (14) becomes: 

        𝑁𝑡ℎ(1,1) =
𝜋2 [(𝑃1 + 1)𝑃2 + 2(𝜈21𝑃2 +

𝑒3

6
𝐺12)𝑅

2 + (
𝐸22

𝐸11
− 𝑃1)𝑃2𝑅

4]

𝑎2(1 + 𝛽𝑅2)
 

 

  

(15) 

3.2. The buckling of the three-phase orthotropic plate subjected to axial compression 

When the plate is compressed in x direction, then  𝛽 = 0 and (14) becomes: 

       N0 = N(ψa,ψc,a/b,e)

=
π2 [(P1 + 1)P2m

4 + 2(ν21P2 +
e3

6
G12)m

2n2R2 + (
E22

E11
− P1) P2n

4R4]

m2a2
 

(16) 

The equation (16) is the equation with the variables: ψa, ψc, a/b and e used to study the buckling of 

the three-phase orthotropic plate bearing axial compression. 

The smallest value of N0 corresponding to 𝑛 = 1 at R = [m(m+ 1)]1/2 (
P1+1
E22
E11

−P1
)

1/4

is: 

𝑁𝑡ℎ(𝑚, 1) =
𝜋2 [(𝑃1 + 1)𝑃2𝑚

4 + 2 (𝜈21𝑃2 +
𝑒3

6
𝐺12)𝑚

2𝑅2 + (
𝐸22

𝐸11
− 𝑃1)𝑃2𝑅

4]

𝑚2𝑎2
 

 

(17) 
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4. Results and discussion 

Survey of three-phase composite plate of axb dimensions, made from AKA resin, WR800 glass 

cloth and TiO2 particle including 07 layers 00 and 900 in the order of layers notated 

7(90/0)≡[90/0/90/0/90/0/90] and 7(0/90)≡[0/90/0/90/0/90/0], the plate is composed of the following 

component materials: 

AKA resin                 : Em = 1.43 GPa ; νm=0.345       

Glass reinforced fiber : Ea = 22.0 Gpa ; νa=0.24         

TiO2 particle   :         Ec = 5.58 Gpa ; νc=0.20     

 

 (18) 

Replace the values (18) into the formula (15) to have results shown in the following tables: 

4.1. The buckling of the three-phase orthotropic plate under biaxial compression load 

Table 1. Effect of fiber ratio on critical force of plate under biaxial compression load (figure 3) 

ψc=0.2 (constant particle ratio) – Laminated plates 7(90/0), with β=1, b=0.4m and m=n=1. 

Ψa 

(%) 

E11 

(Gpa) 

E22 

(Gpa) 

Re 

 

D11 

(Pa.m3) 

D12 

(Pa.m3) 

G12 

(Gpa) 

D22 

(Pa.m3) 

D66 

(Pa.m3) 

R=a/b 

 

Nth 

(N/m) 

0.20 5.78 2.96 0.75 22.81 10.95 0.98 20.72 3.49 2 1534.93 

0.25 6.78 3.23 0.75 26.45 12.62 1.07 23.80 3.81 2 1755.72 

0.30 7.78 3.52 0.75 29.96 14.11 1.17 26.78 4.17 2 1967.91 

0.35 8.78 3.84 0.75 33.29 15.41 1.28 29.62 4.58 2 2170.76 

0.40 9.78 4.20 0.75 36.44 16.51 1.41 32.36 5.04 2 2364.98 

ψc=0.2 (constant particle ratio)- Laminated plates 7(0/90), with β=1, b=0.4m and m=n=1. 

Ψa 

(%) 

E11 

(Gpa) 

E22 

(Gpa) 

Re 

 

D11 

(Pa.m3) 

D12 

(Pa.m3) 

G12 

(Gpa) 

D22 

(Pa.m3) 

D66 

(Pa.m3) 

R=a/b 

 

Nth 

(N/m) 

0.20 5.78 2.96 1.33 24.73 10.95 0.98 18.79 3.49 2 1445.87 

0.25 6.78 3.23 1.33 28.90 12.62 1.07 21.36 3.81 2 1642.68 

0.30 7.78 3.52 1.33 32.89 14.11 1.17 23.85 4.17 2 1832.33 

0.35 8.78 3.84 1.33 36.66 15.41 1.28 26.25 4.58 2 2014.63 

0.40 9.78 4.20 1.33 40.21 16.51 1.41 28.59 5.04 2 2190.65 

Table 2. Effect of particle ratio on critical force of plate under biaxial compression load (figure 4) 

ψa=0.2 (constant fiber ratio)- Laminated plates 7(90/0), with β=1, b=0.4m and m=n=1. 

Ψc 

(%) 

E11 

(Gpa) 

E22 

(Gpa) 

Re 

 

D11 

(Pa.m3) 

D12 

(Pa.m3) 

G12 

(Gpa) 

D22 

(Pa.m3) 

D66 

(Pa.m3) 

R=a/b 

 

Nth 

(N/m) 

0.20 5.78 2.96 0.75 22.81 10.95 0.98 20.72 3.49 2 1534.93 

0.25 5.87 3.12 0.75 22.90 10.77 1.04 20.90 3.71 2 1551.00 

0.30 5.96 3.28 0.75 23.03 10.61 1.11 21.13 3.95 2 1570.60 

0.35 6.06 3.46 0.75 23.22 10.46 1.18 21.41 4.20 2 1593.66 

0.40 6.17 3.64 0.75 23.45 10.33 1.25 21.72 4.48 2 1620.19 

ψa=0.2 (constant fiber ratio) – Laminated plates 7(0/90), with β=1, b=0.4m and m=n=1. 

Ψc 

(%) 

E11 

(Gpa) 

E22 

(Gpa) 

Re 

 

D11 

(Pa.m3) 

D12 

(Pa.m3) 

G12 

(Gpa) 

D22 

(Pa.m3) 

D66 

(Pa.m3) 

R=a/b 

 

Nth 

(N/m) 

0.20 5.78 2.96 1.33 24.73 10.95 0.98 18.79 3.49 2 1445.87 

0.25 5.87 3.12 1.33 24.73 10.77 1.04 19.07 3.71 2 1466.01 

0.30 5.96 3.28 1.33 24.79 10.61 1.11 19.38 3.95 2 1489.51 

0.35 6.06 3.46 1.33 24.89 10.46 1.18 19.73 4.20 2 1516.34 

0.40 6.17 3.64 1.33 25.04 10.33 1.25 20.13 4.48 2 1546.52 
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Figure 3. Effect of fiber ratio on critical force of 

plate under biaxial compression load. 

Figure 4. Effect of particle ratio on critical force of 

plate under biaxial compression load. 

Comment:  

- When the fiber and particle volume fraction ratio increase, the critical loads of the plate increase. 

Moreover, the effect of fiber volume fraction on the buckling of composite plate is better than one of 

the particle volume fraction. 

- Layer placement sequence affects the buckling of plates, the value between two plates differs 

from 5 ÷ 8% (plate 7 (90/0) has force-bearing capacity better than plate 7 (0/90)). 

Table 3. Effect R = a/b on the critical force of plate under biaxial compression load (figure 5) 

ψc=0.2 andψa=0.4  - Laminated plates 7(90/0), with β=1, b=0.4m and m=n=1. 

R=a/b 

 

ψa 

(%) 

E11 

(Gpa) 

E22 

(Gpa) 

Re 

 

D11 

(Pa.m3) 

D12 

(Pa.m3) 

G12 

(Gpa) 

D22 

(Pa.m3) 

D66 

(Pa.m3) 

Nth 

(N/m) 

1.00 0.40 9.78 4.20 0.75 36.44 16.51 1.41 32.36 5.04 3761.70 

2.00 0.40 9.78 4.20 0.75 36.44 16.51 1.41 32.36 5.04 2364.98 

4.00 0.40 9.78 4.20 0.75 36.44 16.51 1.41 32.36 5.04 2079.61 

6.00 0.40 9.78 4.20 0.75 36.44 16.51 1.41 32.36 5.04 2032.22 

8.00 0.40 9.78 4.20 0.75 36.44 16.51 1.41 32.36 5.04 2016.13 

ψc=0.2 andψa=0.4  - Laminated plates 7(0/90), with β=1, b=0.4m and m=n=1. 

R=a/b 

 

ψa 

(%) 

E11 

(Gpa) 

E22 

(Gpa) 

Re 

 

D11 

(Pa.m3) 

D12 

(Pa.m3) 

G12 

(Gpa) 

D22 

(Pa.m3) 

D66 

(Pa.m3) 

Nth 

(N/m) 

1.00 0.40 9.78 4.20 1.33 40.21 16.51 1.41 28.59 5.04 3761.70 

2.00 0.40 9.78 4.20 1.33 40.21 16.51 1.41 28.59 5.04 2190.65 

4.00 0.40 9.78 4.20 1.33 40.21 16.51 1.41 28.59 5.04 1861.71 

6.00 0.40 9.78 4.20 1.33 40.21 16.51 1.41 28.59 5.04 1806.24 

8.00 0.40 9.78 4.20 1.33 40.21 16.51 1.41 28.59 5.04 1787.33 

Table 4. Effect of thickness on critical force of plate under biaxial compression load (figure 6) 

ψc=0.2 and ψa=0.4  - Laminated plates 5(90/0)÷11(90/0), with β=1, m=n=1, b=0.4m and R=2. 

E 

(m) 

E11 

(Gpa) 

E22 

(Gpa) 
Re α 

D11 

(Pa.m3) 

D12 

(Pa.m3) 

G12 

(Gpa) 

D22 

(Pa.m3) 

D66 

(Pa.m3) 

Nth 

(N/m) 

0.0025 9.78 4.20 0.67 0.39 13.63 6.02 1.41 11.44 1.84 845.66 

0.0035 9.78 4.20 0.75 0.43 36.44 16.51 1.41 32.36 5.04 2364.98 

0.0045 9.78 4.20 0.80 0.44 76.44 35.08 1.41 69.78 10.71 5073.53 

0.0055 9.78 4.20 0.83 0.45 138.31 64.06 1.41 128.66 19.55 9321.11 

ψc=0.2 and ψa=0.4  - Laminated plates 5(0/90)÷11(0/90), with β=1, m=n=1, b=0.4m, and R=2. 
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E 

(m) 

E11 

(Gpa) 

E22 

(Gpa) 
Re α 

D11 

(Pa.m3) 

D12 

(Pa.m3) 

G12 

(Gpa) 

D22 

(Pa.m3) 

D66 

(Pa.m3) 

Nth 

(N/m) 

0.0025 9.78 4.20 1.50 0.21 15.46 6.02 1.41 9.61 1.84 760.96 

0.0035 9.78 4.20 1.33 0.29 40.20 16.51 1.41 28.60 5.04 2191.34 

0.0045 9.78 4.20 1.25 0.33 82.77 35.08 1.41 63.45 10.71 4780.51 

0.0055 9.78 4.20 1.20 0.36 147.96 64.06 1.41 119.02 19.55 8874.74 

 

Comment: 

- When the R coefficient increases, the critical force of plate bearing two-direction compression 

decreases, rapidly at first then slowly to approach the smallest value Nxmin = −
Kx

π2
π2D22

b2
=

1995.84 và 1763.4 (
N

m
) in the order of layers 7(90/0) and 7(0/90) [since β=1, plate bearing uniform 

compression, according to [19] this case is hydrostatic pressure (σy/σx=1) then the buckling parameter 

is: 
Kx

π2
= 1]. 

- When the thickness increases, the force-bearing capacity of the plate increases, layer 7(90/0) has 

better force-bearing capacity than layer 7(0/90) from 5 ÷ 11%. 

  

Figure 5. Effect R = a/b on the critical force of plate 

under biaxial compression load. 

 

Figure 6. Effect of thickness on critical force of plate 

under biaxial compression load. 

 

4.2. The buckling of the three-phase orthotropic plate subjected to an axial compression 

Replace the values (18) into the formula (17) to have results shown in the following tables: 

Table 5. Effect of fiber ratio on critical force of plate under axial compression load (figure 7). 

Ψc=0.2 (constant particle ratio) – Laminated plates 7(90/0), with β=0, b=0.4m and m=n=1. 

Ψa 

(%) 

E11 

(Gpa) 

E22 

(Gpa) 

Re 

 

D11 

(Pa.m3) 

D12 

(Pa.m3) 

G12 

(Gpa) 

D22 

(Pa.m3) 

D66 

(Pa.m3) 

R=a/b 

 

Nth 

(N/m) 

0.20 5.78 2.96 0.75 22.81 10.95 0.98 20.72 3.49 1.449 5563.17 

0.25 6.78 3.23 0.75 26.45 12.62 1.07 23.80 3.81 1.452 6367.34 

0.30 7.78 3.52 0.75 29.96 14.11 1.17 26.78 4.17 1.454 7138.42 

0.35 8.78 3.84 0.75 33.29 15.41 1.28 29.62 4.58 1.456 7873.51 

0.40 9.78 4.20 0.75 36.44 16.51 1.41 32.36 5.04 1.457 8574.99 
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ψc=0.2 (constant particle ratio) – Laminated plates 7(0/90), with β=0, b=0.4m and m=n=1. 

Ψa 

(%) 

E11 

(Gpa) 

E22 

(Gpa) 

Re 

 

D11 

(Pa.m3) 

D12 

(Pa.m3) 

G12 

(Gpa) 

D22 

(Pa.m3) 

D66 

(Pa.m3) 

R=a/b 

 

Nth 

(N/m) 

0.20 5.78 2.96 1.33 24.73 10.95 0.98 18.79 3.49 1.515 5535.65 

0.25 6.78 3.23 1.33 28.90 12.62 1.07 21.36 3.81 1.525 6328.89 

0.30 7.78 3.52 1.33 32.89 14.11 1.17 23.85 4.17 1.533 7089.39 

0.35 8.78 3.84 1.33 36.66 15.41 1.28 26.25 4.58 1.537 7814.84 

0.40 9.78 4.20 1.33 40.21 16.51 1.41 28.59 5.04 1.540 8508.09 

 

Table 6. Effect of particle ratio on critical force of plate under axial compression load (figure 8). 

Ψa=0.2 (constant fiber ratio) – Laminated plates 7(90/0), with β=0, b=0.4m and m=n=1. 

Ψc 

(%) 

E11 

(Gpa) 

E22 

(Gpa) 

Re 

 

D11 

(Pa.m3) 

D12 

(Pa.m3) 

G12 

(Gpa) 

D22 

(Pa.m3) 

D66 

(Pa.m3) 

R=a/b 

 

Nth 

(N/m) 

0.20 5.78 2.96 0.75 22.81 10.95 0.98 20.72 3.49 1.449 5563.17 

0.25 5.87 3.12 0.75 22.90 10.77 1.04 20.90 3.71 1.447 5618.08 

0.30 5.96 3.28 0.75 23.03 10.61 1.11 21.13 3.95 1.445 5685.96 

0.35 6.06 3.46 0.75 23.22 10.46 1.18 21.41 4.20 1.443 5766.60 

0.40 6.17 3.64 0.75 23.45 10.33 1.25 21.72 4.48 1.442 5859.95 

 
ψa=0.2 (constant fiber ratio) – Laminated plates 7(0/90), with β=0, b=0.4m and m=n=1. 

Ψc 

(%) 

E11 

(Gpa) 

E22 

(GPa) 

Re 

 

D11 

(Pa.m3) 

D12 

(Pa.m3) 

G12 

(GPa) 

D22 

(Pa.m3) 

D66 

(Pa.m3) 

R=a/b 

 

Nth 

(N/m) 

0.20 5.78 2.96 1.33 24.73 10.95 0.98 18.79 3.49 1.515 5535.65 

0.25 5.87 3.12 1.33 24.73 10.77 1.04 19.07 3.71 1.509 5593.19 

0.30 5.96 3.28 1.33 24.79 10.61 1.11 19.38 3.95 1.504 5663.50 

0.35 6.06 3.46 1.33 24.89 10.46 1.18 19.73 4.20 1.499 5746.39 

0.40 6.17 3.64 1.33 25.04 10.33 1.25 20.13 4.48 1.494 5841.84 

           

 

 
 

Figure 7. Effect of fiber ratio on critical force of plate 

under axial compression load. 
Figure 8. Effect of particle ratio on critical force of 

plate under axial compression load. 
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Comment:  

- When the fiber and particle volume fraction ratio increase the one-direction compression 

resistance of the plate increase, the effect of fiber on the plate's buckling is better than the particle. 

- Plates of the same size have force-bearing capacity in one direction at least 3.6 times better than 

in two directions. 

Table 7. Effect R = a/b on the critical force of plate under axial compression load (figure 9) 

ψc=0.2 – Laminated plates 7(90/0), with β=0, b=0.4m and m=1÷5, n=1. 

R=a/b 

 

ψa 

(%) 

E11 

(GPa) 

E22 

(GPa) 

Re 

 

D11 

(Pa.m3) 

D12 

(Pa.m3) 

G12 

(GPa) 

D22 

(Pa.m3) 

D66 

(Pa.m3) 

Nth 

(N/m) 

1.457 0.40 9.78 4.20 0.75 36.44 16.51 1.41 32.36 5.04 8574.99 

2.523 0.40 9.78 4.20 0.75 36.44 16.51 1.41 32.36 5.04 7868.93 

3.569 0.40 9.78 4.20 0.75 36.44 16.51 1.41 32.36 5.04 7692.41 

4.607 0.40 9.78 4.20 0.75 36.44 16.51 1.41 32.36 5.04 7621.81 

5.643 0.40 9.78 4.20 0.75 36.44 16.51 1.41 32.36 5.04 7586.50 

 

ψc=0.2 - Laminated plates 7(0/90), with β=0, b=0.4m and m=1÷5, n=1. 

R=a/b 

 

ψa 

(%) 

E11 

(GPa) 

E22 

(GPa) 

Re 

 

D11 

(Pa.m3) 

D12 

(Pa.m3) 

G12 

(GPa) 

D22 

(Pa.m3) 

D66 

(Pa.m3) 

Nth 

(N/m) 

1.540 0.40 9.78 4.20 1.33 40.21 16.51 1.41 28.59 5.04 8508.09 

2.668 0.40 9.78 4.20 1.33 40.21 16.51 1.41 28.59 5.04 7810.95 

3.773 0.40 9.78 4.20 1.33 40.21 16.51 1.41 28.59 5.04 7636.66 

4.870 0.40 9.78 4.20 1.33 40.21 16.51 1.41 28.59 5.04 7566.95 

5.965 0.40 9.78 4.20 1.33 40.21 16.51 1.41 28.59 5.04 7532.09 

 

Table 8. Effect of thickness on critical force of plate under axial compression load (figure 10) 

ψc=0.2 and ψa=0.4  - Laminated plates 5(90/0)÷11(90/0), with β=0, b=0.4m, m=n=1. 

e 

(m) 

E11 

(GPa) 

E22 

(GPa) 
Re α 

D11 

(Pa.m3) 

D12 

(Pa.m3) 

G12 

(GPa) 

D22 

(Pa.m3) 

D66 

(Pa.m3) 

Nth 

(N/m) 

0.0025 9.78 4.20 0.67 0.39 13.63 6.02 1.41 11.44 1.84 3121.02 

0.0035 9.78 4.20 0.75 0.43 36.44 16.51 1.41 32.36 5.04 8574.99 

0.0045 9.78 4.20 0.80 0.44 76.44 35.08 1.41 69.78 10.71 18233.23 

0.0055 9.78 4.20 0.83 0.45 138.31 64.06 1.41 128.66 19.55 33297.92 

 
ψc=0.2 and ψa=0.4  - Laminated plates 5(0/90)÷11(0/90), with β=0, b=0.4m, m=n=1. 

e 

(m) 

E11 

(GPa) 

E22 

(GPa) 
Re α 

D11 

(Pa.m3) 

D12 

(Pa.m3) 

G12 

(GPa) 

D22 

(Pa.m3) 

D66 

(Pa.m3) 

Nth 

(N/m) 

0.0025 9.78 4.20 1.50 0.21 15.46 6.02 1.41 9.61 1.84 3075.01 

0.0035 9.78 4.20 1.33 0.29 40.20 16.51 1.41 28.60 5.04 8508.49 

0.0045 9.78 4.20 1.25 0.33 82.77 35.08 1.41 63.45 10.71 18146.05 

0.0055 9.78 4.20 1.20 0.36 147.96 64.06 1.41 119.02 19.55 33190.04 
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Figure 9. Effect R = a/b on the critical force of plate 

under axial compression load. 
Figure 10. Effect of thickness on critical force of 

plate under axial compression load. 

Comment:  

- When the R coefficient increases, the critical force of the plate bearing one-direction 

compression decreases, first decreases, rapidly at first then slowly to approach the smallest value 

Nxmin = −
Kx

π2
π2D22

b2
= 7515.89 và 7462.38 (

N

m
) in the order of layers 7(90/0) and 7(0/90) [where the 

smallest value of buckling parameter is:
Kx

π2
= 2(√

D11

D22
+
D12+2D66

D22
) [19] 

- When the thickness increases, the force-bearing capacity of the plate increases, layers 7(90/0) 

and 7(0/90) has a critical compressed force in an equivalent direction. 

5. Conclusion 

The article introduces study on the buckling of orthotropic three-phase composite plates subjected 

to simultaneous biaxial and axial compression load. Some conclusions are obtained: 

- Static stability of the three-phase composite plate is significantly influenced by elements of 

material composition, particles and fibers volume fraction ratio, plate size and thickness: 

When the fiber ratio increases, the compressive bearing capacity of plates strongly increases; 

however, when the percentage of particle increases, the compressive bearing capacity of plates less 

increases.  

Therefore, the effect of fiber on plate buckling is much better than that of particle. 

When the R-shape parameter increases, the critical force of plates subjected to simultaneous 

biaxial and axial compression reduces, rapidly at first then slowly to approach the smallest value (for 

biaxial compression Nx min = 46% Nth(1,1) and axial compression Nx min = 87% Nth(m,1)). Therefore, 

it is necessary to select this parameter reasonably to ensure the buckling of the plate without increasing 

its weight. 

Plates of the same size have force-bearing capacity in one direction at least 3.6 times better than in 

two directions. 

- Layer placement sequence affects the buckling of plates, the value between two plates differs 

from 5 ÷ 11% (plate 7 (90/0) has force-bearing capacity better than plate 7 (0/90)), which means that 
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in terms of layer inlay: the bigger the number of layers inlaid in perpendicular direction (horizontal 

direction of the plate) is, the better the stability will be. 

- When the thickness increases, compression and shear resistance of the plate increases. 

- When the thickness increases, the force-bearing capacity of the plate increases, layer 7(90/0) has 

better force-bearing capacity than layer 7(0/90) from 5 ÷ 11%. 

Thus, upon adding reinforced particles to improve the criteria: increasing waterproofing, fire-

retardancy and the surface hardness of the plate will effect on tensile, bending, impact strength and the 

buckling of the plate. The aforementioned research results are the scientific basis for shipbuilding 

facilities to design and manufacture ship structures and equipment on board to meet the criteria: better 

stability, waterproofing, fire-retardancy materials with most reasonable prime price. 
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Appendix A: 
 

To determine the response of plates, laminated composite plate are placed in the coordinate system 

of x, y, z. Where: xy is the middle surface of the plate and z is the direction according to the thickness 

h of the plate. According to Kirchhoff assumption, the deformation of the normal line with middle 

surface is a straight line perpendicular to the deformation surface of the middle surface. Therefore, the 

response of plates is represented by the following relation: 

𝑢 = 𝑢0 − 𝑧
𝜕𝑤

𝜕𝑥
 ; (Leissa, 1985, [19]) 

𝑣 = 𝑣0 − 𝑧
𝜕𝑤

𝜕𝑦
 

(1)  

 

Figure 11: Laminated composite plate 

Where: u, v, w are displacement components along the x, y and z directions, and u0, v0 are 

displacement at one point of the middle surface. u0, v0 and w0 are functions of x and y. Deformation - 

displacement equations are used according to classical elasticity theory to have [19, 20]: 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
,   𝜀𝑦 =

𝜕𝑣

𝜕𝑦
,    𝛾𝑥𝑦 =

𝜕𝑣

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
 ;                                         (2) 

Where: εx, εy is the deformation in x and y directions; γxy is shearing deformation, the equation (1) 

is rewritten as follows: 

0

0

0

,

x x x

y y y

xy xy xy

k

z k

k

 

 

 

     
     

      
     
        

                                         (3) 

Where: εx
0, εy

0 và γ
xy
0  is the deformation of middle surface, and kx, ky, kxy are the curvature of the 

plate bearing bending force. 

(

𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

) =

[
 
 
 
 

𝜕𝑢0

𝜕𝑥
𝜕𝑣0

𝜕𝑦

𝜕𝑣0

𝜕𝑥
+
𝜕𝑢0

𝜕𝑦 ]
 
 
 
 

,    [

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦

] =

[
 
 
 
 −

𝜕2𝑤0

𝜕𝑥2

−
𝜕2𝑤0

𝜕𝑦2

−2
𝜕2𝑤0

𝜕𝑥𝜕𝑦]
 
 
 
 

  

 

 

(4) 

Hooke's law for composite plates is defined as follows: 
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   (5) 

Where: k is the number of layers 
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   
 

   

   

   44

66

22

6612221166

3

661222

3

66121126

3

661222

3

66121116

22

6612

4

22

4

1122

44

12

22

66221112

22

6612

4

22

4

1111

22'

22'

22'

22'

4'

22'

scQscQQQQQ

scQQQcsQQQQ

csQQQscQQQQ

csQQcQsQQ

csQscQQQQ

csQQsQcQQ













   

 

 

 

                                  (6) 

𝑠 = sin 𝜃; 𝑐 = cos𝜃;  is the angle between the direction of fiber and coordinates. 

And 

𝑄11 =
𝐸11

1−
𝐸22
𝐸11

𝜈12
2
=

𝐸11

1−𝜈12𝜈21
; 

 
𝑄22 =

𝐸22

1−
𝐸22
𝐸11

𝜈12
2
=

𝐸22

𝐸11
𝑄11  

𝑄12 =
𝜈12𝐸22

1−𝜈12𝜈21
= 𝜈12𝑄22;   𝑄66 = 𝐺12  

 

 

                       (7) 

(Where: 1, 2 are direction of fiber)

 

Force and modulus of a composite plate are determined as follows: 

[

𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦

] = ∫ [

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦

]

𝑘

𝑑𝑧

ℎ/2

−ℎ/2

 

                                    (8) 

[

𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

] = ∫ 𝑧 [

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜏𝑥𝑦

]

𝑘

𝑑𝑧

ℎ/2

−ℎ/2

 

                                    (9) 

Where: σxx and σyy are normal stresses, and τxy is shear stress. 

Force and modulus relationship between the middle-surface deformation and curvature of the plate 

is as follows: 
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[
 
 
 
 
 
 
𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦
𝑀𝑥
𝑀𝑦
𝑀𝑥𝑦]

 
 
 
 
 
 

=

[
 
 
 
 
 
𝐴11𝐴12𝐴16 𝐵11 𝐵12𝐵16
𝐴12𝐴22𝐴26𝐵12𝐵22𝐵26
𝐴16𝐴26𝐴66𝐵16𝐵26𝐵66
𝐵11𝐵12𝐵16𝐷11𝐷12𝐷16
𝐵12𝐵22𝐵26𝐷12𝐷22𝐷26
𝐵16𝐵26𝐵66𝐷16𝐷26𝐷66 ]

 
 
 
 
 

[
 
 
 
 
 
 
𝜀𝑥
0

𝜀𝑦
0

𝛾𝑥𝑦
0

𝑘𝑥
𝑘𝑦
𝑘𝑥𝑦]

 
 
 
 
 
 

 

 

 

                                 (10) 

Or in shortened form: 

[
𝑁
𝑀
] = [

𝐴𝐵
𝐵𝐷

] [
𝜀
𝑘
]                                   (11) 

Where:  

'

ij 1
1

( ) ( ),
n

ij k k k
k

A Q h h




 
, 1,2,6i j   

' 2 2

ij 1
1

1
( ) ( ),

2

n

ij k k k
k

B Q h h




 
, 1,2,6i j   

' 3 3

ij 1
1

1
( ) ( ),

3

n

ij k k k
k

D Q h h




 
, 1,2,6i j   

 

 

 

 

                                  (12) 

On the other hand, the plate bearing q pressure in z direction and membrane force (Nx, Ny, Nxy). 

Therefore, there is an equilibrium simultaneous equation like (Leissa, 1985, [19]): 

𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦

𝜕𝑦
− 𝑄𝑥

𝜕𝑤0
𝜕𝑥

= 0 
  (13a) 

𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑦

𝜕𝑦
− 𝑄𝑦

𝜕𝑤0
𝜕𝑦

= 0 
(13b) 

𝜕𝑄𝑥
𝜕𝑥

+
𝜕𝑄𝑦

𝜕𝑦
+ 𝑁𝑥

𝜕2𝑤𝑜
𝜕𝑥2

+ 2𝑁𝑥𝑦
𝜕2𝑤0
𝜕𝑥𝜕𝑦

+ 𝑁𝑦
𝜕2𝑤0
𝜕𝑦2

+ 𝑞 = 0 
(13c) 

And: 

𝑄𝑥 =
𝜕𝑀𝑥
𝜕𝑥

+
𝜕𝑀𝑥𝑦

𝜕𝑦
 

                                  (14a) 

𝑄𝑦 =
𝜕𝑀𝑥𝑦

𝜕𝑥
+
𝜕𝑀𝑦

𝜕𝑦
 

                                  (14b) 

The transverse shear forces Qx and Qy, as well as the slopes  
∂w0

∂x
 and  

∂w0

∂y
 are typically small in the 

two of equations (13a) and (13b). Taking advantage of this, and substituting equations (14a) and (14b), 

equations (13a), (13b) and (13c) become. 

𝜕𝑁𝑥
𝜕𝑥

+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 0 

(15a) 
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𝜕𝑁𝑥𝑦

𝜕𝑥
+
𝜕𝑁𝑦

𝜕𝑦
= 0 

(15b) 

𝜕2𝑀𝑥
𝜕𝑥2

+ 2
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝜕𝑦2
+𝑁𝑥

𝜕2𝑤0
𝜕𝑥2

+ 2𝑁𝑥𝑦
𝜕2𝑤0
𝜕𝑥𝜕𝑦

+ 𝑁𝑦
𝜕2𝑤0
𝜕𝑦2

+ 𝑞 = 0 
(15c) 

Displacement field expression has the following form: 

𝑢0 = 𝑢𝑜
𝑖 + 𝜆𝑢0 

𝑣0 = 𝑣𝑜
𝑖 + 𝜆𝑣0     

𝑤0 = 𝑤𝑜
𝑖 + 𝜆𝑤0 

 

 

  (16) 

Where: (u0
i , v0

i , w0
i ): is the displacement field before instability 

(u0, v0, w0): is any possible displacement field (satisfying boundary conditions and continuity 

conditions) 

λ: is an infinitely small scalar regardless of coordinates of the surveyed point. 

The phenomenon of instability is seen as a process of producing an extremely small deviation from 

a balanced position. 

Combining (16) and (11), the following relation is formed: 

{
𝑁 = 𝐴𝜀𝑖 + 𝐵𝑘𝑖 + 𝜆(𝐴𝜀 + 𝐵𝑘) = 𝑁𝑖 + 𝜆𝑁

𝑀 = 𝐵𝜀𝑖 + 𝐷𝑘𝑖 + 𝜆(𝐵𝜀 + 𝐷𝑘) = 𝑀𝑖 + 𝜆𝑀
 

                                 (17) 

Put (16) and (17) into equation (15c) to get a first order equation of λ, ignoring the second order 

terms of λ. This equation is satisfied for all λ, if the terms of λ null out, we have: 

𝜕2𝑀𝑥
𝑖

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦
𝑖

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝑖

𝜕𝑦2
+𝑁𝑥

𝑖
𝜕2𝑤0

𝑖

𝜕𝑥2
+ 2𝑁𝑥𝑦

𝑖
𝜕2𝑤0

𝑖

𝜕𝑥𝜕𝑦
+ 𝑁𝑦

𝑖
𝜕2𝑤0

𝑖

𝜕𝑦2
+ 𝑞𝑖 = 0 

(1

8) 

𝜕2𝑀𝑥
𝜕𝑥2

+ 2
𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝜕𝑦2
+𝑁𝑥

𝑖
𝜕2𝑤0
𝜕𝑥2

+𝑁𝑥
𝜕2𝑤0

𝑖

𝜕𝑥2
 

                       +2𝑁𝑥𝑦
𝑖
𝜕2𝑤0
𝜕𝑥𝜕𝑦

+ 2𝑁𝑥𝑦
𝜕2𝑤0

𝑖

𝜕𝑥𝜕𝑦
+𝑁𝑦

𝑖
𝜕2𝑤0
𝜕𝑦2

+𝑁𝑦
𝜕2𝑤0

𝑖

𝜕𝑦2
+ 𝑞 = 0 

 

 

(1

9) 

 

Equation (18) coincides with equation (15c) allowing the determination of elastic configuration 

(initial configuration) in the case of large horizontal deformation. This equation is not completely 

linear; however, for simplicity's sake, we use linear theory when determining elastic configuration. 

Since w0
i  is pretty small, the curvature terms of the bending-bearing plate in the equation (19) are 

omitted. Then this equation becomes. 

𝜕2𝑀𝑥

𝜕𝑥2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+
𝜕2𝑀𝑦

𝜕𝑦2
+𝑁𝑥

𝑖 𝜕
2𝑤0

𝜕𝑥2
 + 2𝑁𝑥𝑦

𝑖 𝜕2𝑤0

𝜕𝑥𝜕𝑦
+𝑁𝑦

𝑖 𝜕
2𝑤0

𝜕𝑦2
+ 𝑞 = 0  (20) 

Equation (20) coincides with equation (15c) allowing the determination of elastic configuration in 

the case of small horizontal displacement. 

Put the equation (10) into (15a; 15b; 15c), the following three basic expressions are achieved: 
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(21a) 
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(21b) 
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(

21c) 

In the case of symmetric multi-layer plates (𝐵𝑖𝑗 = 0)membrane equations are separate from 

bending equations, and for pure bending cases: 𝑢0 = 𝑣0 = 0, equations (21a) and (21b) null out. Then 

the equations (21a, 21b, 21c) are written in the following form: 

𝐷11
𝜕4𝑤0
∂x4

+ 4D16
𝜕4𝑤0
∂x3 ∂y

+ 2(𝐷12 + 2𝐷66)
𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

+ 4𝐷26
𝜕4𝑤0
𝜕𝑥𝜕𝑦3

+ 𝐷22
𝜕4𝑤0
∂y4

 

            = 𝑁𝑥
𝜕2𝑤0
𝜕𝑥2

+ 2𝑁𝑥𝑦
𝜕2𝑤0
𝜕𝑥𝜕𝑦

+ 𝑁𝑦
𝜕2𝑤0
𝜕𝑦2

+ 𝑞 

  

(22) 

For square-layer plate (𝐷16 = 𝐷26 = 0) the equation (22) becomes: 

𝐷11
𝜕4𝑤0
∂x4

+ 2(𝐷12 + 2𝐷66)
𝜕4𝑤0
𝜕𝑥2𝜕𝑦2

+ 𝐷22
𝜕4𝑤0
∂y4

= 𝑁𝑥
𝜕2𝑤0
𝜕𝑥2

+ 2𝑁𝑥𝑦
𝜕2𝑤0
𝜕𝑥𝜕𝑦

+ 𝑁𝑦
𝜕2𝑤0
𝜕𝑦2

+ 𝑞 

  

(23) 

The equation (23) is also the buckling equation of orthotropic plates. 


