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Abstract: We will present main results of our recent investigations on the validity of the cosmic 

no-hair conjecture proposed by Hawking and his colleagues in some conformal-violating Maxwell 

models, in which a scalar field or its kinetic term is non-trivially coupled to the electromagnetic 

field. In particular, we will show that the studied models really admit the Bianchi type I metrics, 

which are homogeneous but anisotropic space time, as their stable cosmological solutions. Hence, 

these models turn out to be counterexamples to the cosmic no-hair conjecture. 
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1. Introduction 

Cosmic inflation has played a leading role in the modern cosmology due to its success not only in 

solving some important problems such as the horizon, flatness, and magnetic monopole problems [1-

3], but also in predicting properties of the cosmic microwave background radiation (CMB), which 

have been well confirmed by the high technology telescopes of the Wilkinson Microwave Anisotropy 

Probe (WMAP) and Planck collaborations [4-7].       

However, some anomalies of the CMB such as the hemispherical asymmetry and the cold spot 

have been observed by the WMAP’s satellite [4,5] and then confirmed by the Planck’s one [6,7]. More 

importantly, these exotic features cannot be explained within the context of the standard inflationary 

models, which are based on one of basic assumptions that the spacetime of our early universe is just 

simply homogeneous and isotropic as the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric [8]. 

Hence, breaking this basic assumption might provide us a reasonable resolution to this problem. For 
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example, we might think of a modified scenario, in which the early universe might be described by the 

Bianchi metrics, which are homogeneous but anisotropic spacetime [9,10].  

Assuming that the early state of our universe is anisotropic; will its late-time state still be 

anisotropic? This is a very interesting question to all of us. Theoretically, the cosmic no-hair 

conjecture proposed by Hawking and his colleagues long time ago [11,12], which states that our 

universe will approach a homogeneous and isotropic state at the late time, no matter its early profile, 

might help us to answer this non-trivial question if it was proved to be valid. Although several 

important proofs for this conjecture have been made under some specific cosmological scenarios, e.g., 

see Refs. [13-18], a complete proof for this conjecture has been a very hard task to the cosmologists 

and physicists for several decades. Besides the proofs, the cosmic no-hair conjecture has been 

examined by other people to see whether it is violated. Indeed, some counterexamples to this 

conjecture have been claimed to exist [19-26]. One of them proposed by Kanno, Soda, and Watanabe 

(KSW) [23-26] has been shown to admit a stable and attractive inflationary Bianchi type I solution, 

which really violates the prediction of the Hawking’s conjecture, due to the existence of unusual 

coupling term between scalar and electromagnetic fields such as  2f F F

 . Furthermore, some 

non-canonical extensions of this KSW model, in which a canonical scalar field is replaced by non-

canonical scalar ones such as the Dirac-Born-Infeld (DBI), supersymmetric Dirac-Born-Infeld (SDBI), 

and covariant Galileon fields, have been proposed and shown to be counterexamples to the cosmic no-

hair conjecture [27-30].  

It is very interesting to note that the KSW model along with its non-canonical extensions can be 

regarded as a subclass of the conformal-violating Maxwell theory, in which a scalar field is allowed to 

couple to the electromagnetic field such that the conformal invariance of Maxwell theory is broken in 

order to generate large-scale galactic electromagnetic fields in the present universe [31-35]. Hence, we 

might think that the violation of isotropy is closely related to the violation of conformal invariance 

during the inflationary phase of our universe. In the light of this observation, we has proposed a new 

model [36-37], in which the kinetic term of scalar field defined as 2X 

     is coupled to the 

electromagnetic field as  2J X F F

 . As a result, we have been able to show that this model does 

admit a counterexample to the cosmic no-hair conjecture during the expanding phase, not the 

inflationary phase as the KSW model. This result implies that the cosmic no-hair conjecture does not 

prefer conformal-violating Maxwell terms.  

As a result, the present paper is devoted to summarize basic results of our recent studies on the 

validity of the cosmic no-hair conjecture in some conformal-violating Maxwell models mentioned 

above. The article is organized as follows: A very brief introduction of our research has been written 

in section 1. The conformal-violating Maxwell theory along with the KSW model will be mentioned in 

section 2. Then, we will present the non-canonical extensions of the KSW mode in section 3. In 

section 4, we will show a basic setup of our new anisotropic inflation model, which is also a subclass 

of the conformal-violating Maxwell theory. In section 5, the validity of the cosmic no-hair conjecture 

will be discussed. Finally, concluding remarks will be given in section 6.  

2. The Kanno-Soda-Watanabe model as a subclass of the conformal-violating Maxwell theory 

As mentioned above, we would like to show in this section a basic setup of the KSW model. Then 

we will point out that the KSW model is just a subclass of the so-called conformal-violating Maxwell 

theory. Let us begin with the following action of the KSW model [23-26] 
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where detg g  , R is the Ricci scalar, PM is the reduced Planck mass,  t  is a canonical 

scalar field, and  f  is an arbitrary function of scalar field. In addition, F A A        is the field 

strength of the electromagnetic field (a.k.a. the Maxwell field) described by a vector field A . As a 

result, varying the action (1) with respect to the inverse metric g   will lead to the corresponding 

Einstein field equation, 
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On the other hand, the field equations for the scalar and vector fields can be defined to be  
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where  V dV d   , d dt  , 2 2d dt  , and H is the Hubble constant coming from  g 

. In order to examine the validity of the cosmic no-hair conjecture, the authors of papers in [23-26] 

consider the following Bianchi type I metric,  

          2 2 2 2 2exp 2 4 exp 2 2ds dt t t dx t t dy dz                 ,  (5) 

along with the vector field, whose configuration is given by   0, ,0,0xA A t  . It is noted that  t  

appearing in the Bianchi type I metric (5) should be regarded as a deviation from isotropy 

characterized by  t . Hence,    t t   is required in order to be consistent with the observational 

data of WMAP and Planck. As a result, the following solution of the field equation of vector field (4) 

turns out to be [23-26] 

                                                              2 exp 4x AA t p f      ,                                                   (6) 

with Ap  is a constant of integration. Thanks to this solution, the non-vanishing component equations 

of the Einstein field equation shown Eq. (2) read  
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In addition, the equation of motion of the scalar field shown in Eq. (3) now become as 

       
       2 33 exp 4 4AV p f f             .   (10)  

So far, all field equations for the KSW model have been derived. Now, in order to seek anisotropic 

power-law solution to this model, ones prefer considering the following ansatz [23-26], 

            0log ,  log ,  log
P

t t t t t
M


              (11) 

along with the compatible exponential potentials, 

                                               0 0exp ,  exp
P P

V V f f
M M

 
   

   
    

   
.                                      (12) 

As a result, ones have been able to figure out the corresponding solution such as [23-26] 
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.                (13) 

This solution can be used to represent anisotropic inflationary universe with  and 1 if

  . Indeed, it is easily to have 1 3      during the inflationary phase. Hence, the KSW 

model really produces a small spatial anisotropy, which turns out to be consistent with the 

observational data of WMAP and Planck. More interestingly, this anisotropic power-law solution has 

been shown to be stable and attractive by the dynamical system approach [23-26]. This result implies 

that the late-time state of our universe would be anisotropic rather than isotropic as the cosmic no-hair 

conjecture predicts. In other words, the KSW model does admit a counterexample to the cosmic no-

hair conjecture. This fact makes the KSW model very attractive. Consequently, this model has been 

investigated extensively. Many cosmological aspects have been discussed in the context of the KSW 

model. Interested readers should read two interesting review papers in Refs. [23-26]. 

It is worth noting that this action can be regarded as a subclass of a conformal-violating Maxwell 

theory, whose general action is given by [31-35] 
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where  , , ,I R X  is a function of any field of interest. It is clear that  2I f   for the KSW model 

[23-26]. It is noted that when 1I   we will have the usual Maxwell theory, which is conformally 

invariant in four dimensional spacetime. Indeed, if we consider the conformal transformations such as, 

     2g x x g x  , where  x  a smooth, non-vanishing function and called a conformal factor 

[33], the other physical objects, as a result, will transform as follows,  

                           
           2 4 4 , ,  .g x x g x g g F x x F x            (15) 

Consequently, we will have the conformal invariance of the Maxwell theory such as 
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     .                                                 (16) 

It is clear that the existence of  , , ,I R X  in the action (14) will break down the conformal 

invariance since    , , , , , ,I R X I R X  . It is worth noting that the existence of large-scale 

galactic electromagnetic field in the present universe can be explained due to the conformal invariance 

breaking [31-35]. For this important cosmological implication of the conformal-violating Maxwell 

theory, interested readers can see detailed discussions in Refs. [31-35]. 

3. Non-canonical extensions of the Kanno-Soda-Watanabe model 

In this section, we would like to present basic details of some non-canonical extensions of the 

KSW model, which have been published in [27-29]. 

3.1. Dirac-Born-Infeld model 

An action of this model has been proposed in [27] as follows 
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where we have set 1PM  for convenience. In addition,  1 1 1f 

         is the Lorentz 

factor characterizing the motion of the D brane [27]. It is clear that DBI KSWS S  once 1  (or 

equivalently   0f   ). As a result, the corresponding field equations of this model turn out to be 
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Note that the role of  h   in the action (17) is identical to that of  f   in the action (1), i.e., 

    0 exph h  .  (22) 

Using the setup for the metric and fields of the KSW model along with an exponential function 

 f  , 

    0 expf f  ,  (23) 
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we have been able to figure out an analytical solution of the DBI model from its field equations (18)-

(21) [27] 
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provided that the Lorentz factor acts as a constant 0   with    . In the limit 0 1  , we will have 

the solution of KSW model shown above. It is noted that 0  can be arbitrarily larger than one. Similar 

to the KSW model,   is also required to have an anisotropic inflationary solution with a small 

spatial anisotropy.  

3.2. Supersymmetry Dirac-Born-Infeld model 

An action of this model has been proposed in [28] such as 
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. Using the setup for the metric and fields of 

the DBI model, we have been able to define the corresponding anisotropic solution such as [28] 
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where the values of N, M, and P are given by 

  2 2

018 1M    ,  (31) 
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It is noted that the Lorentz factor in this SDBI model cannot be arbitrarily larger than one as that in 

the DBI model. In particular, it must obey the following inequalities [28] 

 
01 1





   ,  (34) 

in order to have the inflationary solution with   .  

3.3. Covariant Galileon model  

An action of this model has been proposed in [29] as follows 
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As a result, the corresponding field equations of this model turn out to be 

          
2

2 2 2 3 4 20 0
03 exp 3 exp exp exp 4 4 0

2 2 2

A
k g p

g f                   ,  (36) 

                                    
2

2 2 203 exp 3 exp 4 4 0
2 6

A
g p

f               ,                        (37) 

  
2

23 exp 4 4
3

Ap
f        ,  (38) 

      2 3 2 3 exp 4 4 0Ap f f        ,  (39) 

with  

      2

0 expk X     ,  (40) 

    
2 3

3 2 2 2 2

0 00

1

6 9 2 exp
2

i

i

g H H H R
 

   
 

    
         

    
 .  (41) 

Here,  1 2 3 3H H H H    is the mean Hubble parameter and  1 3i i iH a a i    as its spatial 

components. For this model, we have to choose the function  f   such as 

    0 expf f   ,  (42) 

in order to have an anisotropic inflationary solution as 
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with 2 2

0,  60 20 64 9z z z k         , provided 2

0 3 4k   . Similar to the previous models, 

   is required to have an anisotropic inflationary solution with a small spatial anisotropy,  
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4. A new conformal-violating Maxwell model 

So far, we have shown very briefly the KSW model as well as its non-canonical extensions, which 

are indeed a subclass of the conformal-violating Maxwell theory [31-35]. As a result, all examined 

models admit a non-vanishing small spatial anisotropy of spacetime due to the existence of unusual 

coupling term between scalar and vector fields  2f F F

 . This fact provides us a hint that a 

conformal-violating Maxwell term might induce not only a non-trivial magnetic field but also a spatial 

anisotropy of spacetime. Hence, we would like to study another possible conformal-violating term 

such as  2J X F F 


 to see whether a spatial anisotropy of spacetime exists or not [36-37]. As a 

result, an action of a new conformal-violating Maxwell model is given by [36-37] 
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where  J X  is a function of the kinetic term of scalar field. As a result, the corresponding field 

equations of this model can be shown to be [36] 
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Using the same setup for the metric and fields of the KSW model, we are able to define explicit 

components of the Einstein field equation to be [36] 
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along with the scalar field equation, 
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By choosing the function   0

nJ X J X  and employing all setup for the metric and fields used in 

the KSW model, we are able to obtain the following analytical anisotropic power-law solution as [36] 
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As a result, a constraint for n  can be figured out from the positivity of   as  
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On the other hand, the constraint for expanding solutions, 2 0   , implies that 

  1
5 1 0.31

4
n    .  (56) 

If the above solution is used to represent an inflationary solution, we should have 1n , which leads  

                                                                       
1

1,  
3

n   .                                                          (57) 

It is interesting to note that this model can produce a spatial anisotropy (much) smaller than that of the 

KSW model. Indeed, if we take 40,  1n    for this model, we will have 40.5,  0.003   ; while 

if we choose 40,  1    for the KSW model then we will get KSW KSW40.2,  0.317   .  

5. The validity of the cosmic no-hair conjecture 

So far, we have presented anisotropic power-law solutions of some conformal-violating Maxwell 

models. In this section, therefore, we would like to show that the cosmic no-hair conjecture is really 

violated in these models by showing that the obtained anisotropic solutions are indeed stable and 

attractive. In order to do this, we employ the dynamical system approach used in Refs. [23-26]. It is 

noted that the stability of the anisotropic power-law solutions can also be obtained by using the power-

law perturbations approach [38-39]. In fact, these both approaches lead to the same results about the 

stability of the anisotropic solutions [38-39]. However, only the dynamical systems approach can give 

us a clear picture of the attractor behavior of anisotropic fixed points, which are non-trivial solutions 

of the autonomous equations, 

 0
dX dY dZ

d d d  
   ,  (58) 

with 
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as the dynamical variables [23-30]. It has been shown in Refs. [23-30] that the power-law anisotropic 

solutions are indeed equivalent with the anisotropic fixed points. Hence, the attractor behavior of the 

anisotropic fixed points will imply the stability of the corresponding anisotropic power-law solutions. 

For a complete stability analysis using the dynamical systems, interested readers should read papers in 

Refs. [23-30].  

As displayed in three figures below, we have numerically confirmed the attractor behavior of the 

anisotropic fixed point of the DBI, SDBI, and Galileon models during the inflationary phase. This 

result means that all anisotropic power-law solutions of these non-canonical extensions of the KSW 

model turn out to be stable during the inflationary phase and therefore violate the prediction of the 

cosmic no-hair conjecture. 

 

 

 

 

 

 

 

Fig. 1. The attractor behavior of the anisotropic fixed point of the DBI model (left), SDBI model (center), and 

Galileon model (right) during the inflationary phase. These figures are taken from papers in Refs. [27-29]. 

In contrast to the models involving the coupling  2f F F 

 , the  2J X F F 


 model does not 

admit an attractor solution during the inflationary phase but does admit an attractor one during the 

expanding phase. Detailed stability analysis of this model can be found in Ref.  [36]. 

 

 

 

 

 

 

 

Fig. 2. The attractor behavior of the anisotropic fixed point (purple point) of the  2J X F F 

 model during the 

expanding phase. This figure is taken from Ref. [36]. 
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6. Conclusions 

We have presented basic results of our recent studies on the validity of the cosmic no-hair 

conjecture in some conformal-violating Maxwell models [27-37]. In particular, we have examined two 

types of conformal-violating Maxwell term, one is  2f F F 

  and the other is  2J X F F 


. The 

first coupling is originally proposed in the KSW model [23-26], which plays as a counterexample to 

the cosmic no-hair conjecture. This coupling has been investigated systematically in some non-

canonical scenarios of scalar field [27-30]. As a result, this coupling does play a central role in 

breaking the validity of the cosmic no-hair conjecture during the inflationary phase. The last coupling 

has been proposed in a recent paper [36]. As a result, it also violates the cosmic no-hair conjecture 

during the expanding phase. According to the investigations published in Refs. [23-30,36,37], we 

might come to a conclusion that the cosmic no-hair conjecture proposed by Hawking and his collegues 

long time ago does not prefer the existence of the conformal-violating Maxwell terms such as 

 2f F F 

  and  2J X F F 


. To ensure the validity of the cosmic no-hair conjecture one might 

need the existence of the so-called phantom scalar field, whose kinetic term in negative definite, as 

shown in Refs. [38,39].  
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