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Abstract: Simple geometry model structures can be useful in quantitative evaluation of 
self-potential data. In this paper, we solve local wavenumber equation to estimate the 
horizontal position, the depth and the type of the causative source geometry by using a 
linear least-squares approximation. The advantages of the algorithm in determining the 
horizontal position and depth measure are its independence to shape factor of the sources 
and also its simple computations. The algorithm is built in Matlab environment. The 
validity of the algorithm is illustrated on variable noise-free and random noise included 
synthetic data from two-dimensional (2-D) models where the achieved parametric 
quantities coincide well with the actual ones. The algorithm is also utilized to real self-
potential data from Ergani Copper district, Turkey. The results from the actual data 
application are in good agreement with the published literature for the study area. The 
source code of the algorithm is available from the authors on request. 

Keywords: Local wavenumber, Self-potential, a linear least-squares approximation, 

Ergani copper field. 

1. Introduction 

The self-potential (SP) method, a widely used exploration method in geophysics, is one of the 

oldest techniques of geophysics [1, 2]. The method is based on measuring naturally occurring 

electrical potentials in the underground, caused by various physical and chemical mechanisms such as 
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thermoelectric coupling, electro-kinetic coupling and electrochemical effects [3-5]. Many techniques 

have been proposed for the quantitative interpretation of the SP anomaly data. These techniques can be 

classified into four categories. 

The first category includes the nomograms [6, 7], characteristic curves [8, 9], the analytic signal 

(AS) approach [10-12], the depth-curves method [13, 14]. In these methods, the nature of the source 

geometry is required to be assumed. In this case, simple geometrical shapes such as spheres, cylinders 

and sheet-like sources are used to approximate the buried geological structure. In second category, 

Patella (1997) developed a probabilistic tomographic approach [15, 16]. However, his approach is 

only available for monopoles charge accumulation in the subsurface whereas natural phenomena, like 

oxido-reduction processes or hydroelectric, tend to generate dipolar sources. Revil et al (2001) and 

Iuliano et al (2002) extended below the work of Patella (1997) to the case of dipolar sources ([17], 

[18]). However, it is noteworthy to mention that the above methods do not contribute to the knowledge 

about the source geometry. Another category involves the SP data inversion methods [19-24] where 

assumptions of an inert electrode model are being attempted [25]. In these methods, the redox 

gradient, the host medium resistivity, and the resistance of electrode are the main critical 

considerations on conditioning the gain of the SP anomaly whereas the covering layers, bedrock in 

homogeneities, or irregular topography are being secondary factors defining the shape of the anomaly 

[23, 26]. Hereby, the requirement of a background resistivity model which is assumed and used to 

carry out the inversion procedure is a disadvantage in these methods. The fourth category is naturally 

inspired meta-heuristic algorithms that are based on stochastic algorithms. In general, they can be 

classified in the three chapters: genetic algorithm [5, 27], simulated annealing [1, 5, 28] and particle 

swarm optimization [2, 5, 29-32]. These algorithms only require wider search space bound which is 

their major superiority. These algorithms try to find the optimum solution among all possible solutions 

that exist in model space and they can avoid local minima without requiring a well-constructed initial 

model. 

Salem et al (2005) proposed a method based on the enhanced local wavenumber (ELW) for 

estimating the horizontal location and the depth of 2D magnetic sources [33]. The advantage of this 

method is that it does not assume the geometry of the causative body. Further, their method is efficient 

to provide information of the shape of the body once the depth and the origin along the observation 

line have been determined. Based on the ELW procedure, Srivastava and Agarwal (2009) developed a 

model-independent technique for evaluate SP anomalies [34]. The technique is applicable to 2D 

sources that are approximated by a sphere, an inclined sheet, a horizontal cylinder, a dyke, etc. 

However, these studies lack detailed description about solution of local wavenumber equations, 

making it challenging for readers to understand how some source parameters were determined. 

In the present paper, we solve local wavenumber equation with a more detailed mathematical 

description for determination of the origin along the observation profile, the depth and the shape type 

of the causative body. The applicability of the proposed algorithm has been illustrated through two 

synthetic data cases as well as through real SP data from Ergani Copper district, Turkey.  

2. Theory 

The phase angle [35] is defined as   

θ = atan (
∂M/ ∂z

∂M/ ∂x
) 

             (1) 



P.T. Luan et al. / VNU Journal of Science: Mathematics – Physics, Vol. 35, No. 1 (2019) 83-95 

 

85 

where M is the field and ∂M/ ∂x and ∂M/ ∂z are the derivatives with respect to horizontal and vertical 

directions, respectively. 

The measure of changes of the phase angle θ with respect to the horizontal and vertical directions 

are known as “local wavenumbers” and are given by [33] as follows 

kx =
∂θ

∂x
=

1

|AS|2
(
∂2M

∂x∂z

∂M

∂x
−
∂2M

∂x2
∂M

∂z
) 

(2) 

kz =
∂θ

∂z
=

1

|AS|2
(
∂2M

∂x∂z

∂M

∂z
−
∂2M

∂z2
∂M

∂x
) 

(3) 

where 

|AS| = √(
∂M

∂x
)
2

+ (
∂M

∂z
)
2

 
(4) 

is the AS of the self-potential field, also called the total gradient. Horizontal derivative in equations 2, 

3 and 4 can be easily estimated in the space domain using a simple finite-difference method and 

discrete measurements of M(x), whereas the vertical derivation is determined in the frequency domain, 

as follows [36] 

∂M

∂x
≈
Mi+1 −Mi−1

2∆x
 (5) 

∂M

∂z
≈ F−1[|k|F[M]] (6) 

where i represents the discrete measurement of M(x) along the profile at uniform sample interval ∆x, 
F[] and F−1[] denotes the Fourier and inverse Fourier transforms, respectively, and k is the 

wavenumber. 

The local wavenumbers over a few simple geometrical shaped bodies, with horizontal location xo 

and depth zo, is given by [33] 

kx =
−(N + 1)(z − zo)

(x − xo)
2 + (z − zo)

2
 

(7) 

kz =
(N + 1)(x − xo)

(x − xo)
2 + (z − zo)

2
 

(8) 

where x and z are the positions of the observation points, N is a factor related roughly to the geometry 

of the buried structure. The shape factor for a sphere, a horizontal cylinder, and a semi infinite vertical 

cylinder are 1.5, 1.0 and 0.5, respectively. 

Dividing equation 7 by 8, we obtain 

kx
kz
=
z − zo
x − xo

 
 

or 

kxxo+kzzo = kxx+kzz 
(9) 
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To solve the linear Equation 9, we use a progressively moving window of n data points, and assign 

the local wavenumbers kx and kz for variable values of x and z within the window which its center is 

positioned to the peak of the amplitude of the AS. As an advantage, the linear Equation 9 does not 

need initial knowledge about the shape factor of the source, and can be solved for the depth and 

horizontal position of the causative body using least-squares method. The method defines the estimate 

of xo and zo the values which minimize the sum of the squares: 

S =∑[kx(i)xo + kz(i)zo − kx(i)x(i) − kz(i)z]
2

n

i=1

 
(10) 

Note that S is a function of parameters xo and zo. We need to find these parameters such that S is 

minimum. The necessary condition for S to be minimum is given by [37] 

∂S

∂xo
= 0,

∂S

∂zo
= 0 

  (11) 

We may rewrite these equations as 

{
 
 

 
 ∑kx

2(i)xo +∑kx(i)kz(i)zo =∑kx
2(i)x(i)

n

i=1

n

i=1

n

i=1

+∑kx(i)kz(i)z

n

i=1

∑kx(i)kz(i)xo +∑kz
2(i)zo =∑kx(i)kz(i)x(i) +∑kz

2(i)z

n

i=1

n

i=1

n

i=1

n

i=1

 
(12) 

  

We have obtained that the values of  xo and zo which minimize S satisfy the following matrix 

equation 

AX = B    (13) 

where 

X = [
xo
zo
], 

A =

[
 
 
 
 
 ∑kx

2(i)

n

i=1

∑kx(i)kz(i)

n

i=1

∑kx(i)kz(i)

n

i=1

∑kz
2(i)

n

i=1 ]
 
 
 
 
 

, 

B =

[
 
 
 
 
 ∑kx

2(i)

n

i=1

x(i) ∑kx(i)kz(i)z

n

i=1

∑kx(i)kz(i)

n

i=1

x(i) ∑kz
2(i)

n

i=1

z
]
 
 
 
 
 

 

Here we note that the position of the maximum in the local wavenumber kx or the peak amplitude 

of AS roughly relates to the horizontal position of the causative body. Benefit from this position, a 
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window comprising a proper length of the data is selected for estimation of the location and depth of 

the causative source. 

Once the horizontal and vertical positon of the source is calculated from Equation 13, a value for 

the shape factor N can be computed from Equations 7 or 8 as the value which minimizes the sum of 

the squares: 

S′ =∑[kx(i)(x(i) − xo)
2 + (z − zo)

2 − (N + 1)zo]
2

n

i=1

 
(14) 

Taking the derivative of  S’ with respect to N and setting it to zero gives the following of equation:  

∑[kx(i)(x(i) − xo)
2 + (z − zo)

2] − n(N + 1)zo = 0

n

i=1

 
(15) 

Thus the shape factor N is determined by 

N =
∑ [kx(i)(x(i) − xo)

2 + (z − zo)
2]n

i=1

nzo
− 1 

(16) 

3. Application 

3.1. Synthetic example  

We test the efficiency of the algorithm for various test cases including different theoretical SP 

anomalies of a horizontal cylinder and a sphere produced by using depths varied from 5 to 15 m with 1 

m increments. The initial anomalies of these models have been generated using the following Equation 

[6, 34, 38, 39]: 

V(x) = K
(x − xo)cosα + zosinα

[(x − xo)
2 + zo

2]N
 

(17) 

Here, x is the observation point along x-axis, xo is origin of the anomaly, zo is the depth of the 

causative source, α is the polarization angle, K is the electric current dipole moment, and N is the 

shape factor. 

Table 1. Parameters of the model. 

Model ( )ox m
 

( )oz m
 

( )K mV  ( )   N 

Sphere 60 varying from 5 to 15 -2000 30 1.5 

Cylinder 40 varying from 5 to 15 -2000 30 1 

 

The first example involves a horizontal cylinder with the actual parameters listed in Table 1. By 

using Equation 17, the theoretical SP anomaly due to cylinder was computed at 100 points with data 

spacing of 1 m. Figure 1a shows SP anomalies over horizontal cylinder models for a range of source 

depths (5, 10 and 15m). The AS amplitude of data in Figure 1a is shown in Figure 1b.  Here, the AS 

amplitudes are used to select proper window length and its position. The local wave numbers kx and 

kz are shown in Figure 1c and d respectively. We note that some unexpected sharp oscillations in the 

kz amplitudes mostly occur in the right and left wings of the data even using noise-free synthetic data, 
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due to the computations of second-order vertical derivative. So it is better to estimate the shape factor 

by local wave numbers kx. Figure 2 shows analysis results of the SP anomalies over the horizontal 

cylinder source for varying depths. The analysis results are listed in Table 2. 

 

 

Figure 1. (a) Observed SP anomalies over a horizontal cylinder with varying depths (5m, 10m, 15m). (b) The AS 

amplitudes. (c) Plot of local wavenumber kx. (d) Plot of local wavenumber kz. 



P.T. Luan et al. / VNU Journal of Science: Mathematics – Physics, Vol. 35, No. 1 (2019) 83-95 

 

89 

Figure 2a displays a plot of the calculated depths from Equation 13 versus actual depths. To help 

in the visualization of the quality of analysis results, a line with zero error was superimposed on Figure 

2a. It can be observed from this figure that the result coincide well with the actual depths. A plot of 

horizontal locations computed from Equation 13 versus actual depths is illustrated in Figure 2b along 

with its comparable average value that is displayed by a straight continuous line. Clearly, the results of 

the horizontal location obtained by using Equation 13 are in good agreement with theoretical model. 

Figure 2c shows a plot of the shape factor computed from the local wavenumber versus actual depth. 

Here, the average line is also shown by continuous line. The obtained results are also in good 

agreement with the shape factor of causative body. 

 

 

Figure 2. Graphical illustration of actual depth versus (a) Computed depth, (b) Computed horizontal location; (c) 

Computed shape factor. Horizontal lines represent the average lines of the plotted data in Figure 2b and c. 

Table 2. Numerical results in comparison with actual parameters of SP anomaly caused by a cylinder model. 

Depth (m) Horizontal 

location (m) 

Shape 

factor Actual Calculated 

5 5.20 40.00 1.04 

6 6.17 40.00 1.02 

7 7.13 40.00 1.01 

8 8.11 40.01 1.01 

9 9.08 40.02 1.00 

10 10.07 40.04 1.00 

11 11.05 40.05 1.00 

12 12.04 40.07 0.99 

13 13.03 40.10 0.99 

14 14.03 40.12 0.99 

15 15.02 40.15 1.00 

  Average 40.05 1.00 

  Actual 40.00 1.00 

 

        In the second example, the effectiveness of the algorithm is tested with SP anomaly map caused 

by a polarized sphere. The model parameters of the source body are also given in Table 1. Using 

Equation 17, the theoretical SP anomaly values were computed on a profile 100 m with data spacing 

of 1 m. In order to examine the stability and accuracy of the inverse solution, we added 10% random 

noise to the SP datasets. Figure 3a shows SP anomalies with random noise over a sphere for a range of 

source depths (5m, 10m and 15m). Because the algorithm relies on second order derivatives of the 

observed field, it is sensitive to noise. Therefore, we need to reduce the noise effect prior to detection 
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of source parameters. Using upward continuation of the anomaly data, the effect of the noise can be 

reduced [40, 41]. 

 

Figure 3. (a) Observed SP anomalies over a sphere with varying depths (5m, 10m, 15m). (b) The AS amplitudes. 

(c) Plot of local wavenumber kx. (d) Plot of local wavenumber kz. 
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Figure 4. Graphical illustration of actual depth versus (a) Computed depth; (b) Computed horizontal location; (c) 

Computed shape factor. Horizontal lines represent the average lines of the plotted data in Figure 4b and c. 

Table 3. Numerical results in comparison with actual parameters of SP anomaly with 10% random noise caused 

by a sphere model. 

Depth (m) Horizontal 

location (m) 

Shape 

factor Actual Calculated 

5 4.77 60.56 1.40 

6 5.72 60.58 1.41 

7 6.73 60.61 1.41 

8 7.84 60.65 1.43 

9 8.92 60.65 1.46 

10 9.75 60.70 1.44 

11 10.71 60.66 1.43 

12 11.72 60.71 1.44 

13 13.18 60.71 1.52 

14 13.71 60.67 1.44 

15 15.37 60.49 1.53 

  Average 60.64 1.45 

  Actual 60.00 1.5 

 

Figure 3b, c and d display the results of the AS amplitudes and the local wavenumber fields after 

upward continuation of 2 m, respectively. Figure 4 contains a series of images that illustrates source 

parameters computed from Equations 13 and 16 in case of the presence of noise. The analysis results 

for varying depths are listed in Table 3. Figure 4a compares the detected depth results with the 

theoretical depths. As a way to visualize the quality of results of calculation of depths, we drew a line 

with zero error on Figure 4a. Figure 4b shows a plot of the obtained locations from Equation 13 versus 

theoretical depths. As the first example, an average line of the plotted data gives a better overview of 

the analysis results. It can be seen that errors in computed horizontal location and depth are 

insignificant. A plot of shape factor computed from the local wave number versus actual depth is 

shown in Figure 4c along with their average line. It can be observed that the results of the shape factor 

are in good agreement with theoretical model. 
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3.2. Real data example 

 

Figure 5. (a) SP anomaly data from Ergani Copper district, Turkey (digitized after [34]). (b) The AS amplitude. 

(c) Plot of local wavenumber kx. (d) Plot of local wavenumber kz. 
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In order to demonstrate and assess the applicability of the algorithm, the SP anomaly profile from 

Ergani Copper district [34] which was previously interpreted by many authors with different methods 

[2, 5, 6, 11, 21, 34, 39, 42] has been analyzed. Figure 5a shows the SP anomaly of the studied area. 

For our analysis, the SP anomaly profile of 190 m length was digitized after [34] at intervals of 2 m. 

The observed data represents SP anomaly varies from positive (maximum amplitude of about 115 mV) 

to negative (maximum amplitude of about 230 mV) values along the SP profile. As a pre-process of 

the data, the original field anomaly were upward continued to 2 m to reduce the noise. We have 

calculated the AS amplitude (Figure 5b) of data in Figure 5a for proper selection of window position 

and its length. The local wavenumber fields are shown in Figure 5c and d respectively. By using 

Equation 13, we find two source parameters as: the depth of the body center is at 30.21 m and the 

distance from the origin 62.52 m. It is clear that both the depth and location values provided by the 

algorithm are found to agree well with results provided by other authors as summarized in Table 4. 

The shape factor estimated as a close value to 1 indicates a horizontal cylinder for the geometry of the 

source. The result of the shape factor compares favorably with those obtained by recent studies [2, 5, 

21, 34, 39, 42] (Table 4). 

Table 4. Comparison of the results of this study with the results of previous works available 

 for the SP data from Ergani, Turkey. 

References Horizontal location (m) Depth (m) Structural Index N 

[42] - 38.78 1.36 

[21] - 35.9 1a 

[34] 64.1 28.9 1 

[2] 62.3 32.53 - 

[5] 79.09 33.59 1.18 

[39] - 30.05 - 

This study 62.52 30.21 0.97 

a The assumed shape factor. 

4. Conclusion 

We have presented solution of local wavenumber equation to estimate the depth and horizontal 

position of causative sources without an initial assumption about the geometry of the source. The 

geometry of the source is defined by the shape factor which is derived from the computed origin and 

depth. The algorithm has been proved on noise-free and noise included synthetic SP anomaly data, and 

also applied to real data from Ergani Copper district, Turkey. Test results from synthetic models 

provided very close parameters to the real source construction. In the case of the real data example, the 

estimated source parameters are found in a good correlation with the previous works.  
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