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1. Introduction 

Let  ,M p  be a germ at p  of a real smooth hypersurface in 
n
 and let r  be a local defining 

function for M  near p . The normalized order of contact of the curve   with M at p  is defined by 

 
 

 
, , :

r
M p

 
 

 
 , 

Where  0 p 
 
and

 
    is the vanishing order of    0t   at 0,t     r   is the 

vanishing order of  r t  at 0t  . The D'Angelo type of M at p  is defined by 
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   
 

 
, sup , , sup

r
M p M p

 

 
  

 
  , 

where the supremum is taken over all germs : n   of non-constant holomorphic curves 

with  0 p  . Here and in what follows,    : 0z z        and 1:   . We say that 

p  is of  D'Angelo finite type if  ,M p    and of  D'Angelo infinite type if otherwise.   

Throughout the paper, we assume that  ,M p  is of D'Angelo infinite type. Then, there exists a 

sequence of non-constant holomorphic curves n  such that 
 

 
n

n

r 

 
   as .n   It is natural 

to ask whether there exists a variety that has infinite order contact with  ,M p . This question 

pertains to the regularity issue of  -Neumann problems over pseudoconvex domains (see [1, 2, 3, 4], 

and the references therein).   

If  ,M p  is real-analytic, then by using the ideal theoretic method  L. Lempert and J. P. 

D'Angelo [5, 6]  showed that M  contains a nontrivial holomorphic curve    passing through p . For 

a germ of a real analytic hypersurface in 
3

, we refer the interested reader to [7] for a proof of this 

result by using a geometric construction.  

For the case when  ,M p  is a real smooth hypersurface in 
n
, J. E. Fornæss, L. Lee and Y. 

Zhang [8] proved that if  ,M p   , then there exists a formal complex curve in the hypersurface 

M  through p . However, Kang-Tae Kim and V. T. Ninh [9, Proposition 4] asserted independently 

that there is a formal curve  
1

,j

j

j

t a t t




 
  
 
  which has infinite order contact with M  at p  for 

the case 
2M  .    

  In [9], Kang-Tae Kim and V. T. Ninh pointed out that in general there is no such a regular 

holomorphic curve   . We ensure that this result still holds even for singular holomorphic curve   . 

Namely, our aim is to prove the following theorem. 

Theorem 1. There exists a hypersurface germ  ,0M   in 
2
 with  ,0M     that does not 

admit any (singular) holomorphic curve that has infinite order contact with M   at 0. 

We now briefly sketch the idea of proof of Theorem 1. As in the proof of Example 2 in  [9], we 

construct a certain sequence of smooth functions    0nf C  with  supp nf  tending to  0  

such that nf  is harmonic in a sufficiently small disc in  supp nf  for each 
*n . Moreover, the 

series 
1

n

n

f




  converges uniformly on  to a smooth function  f z . Then the desired hypersurface 

M  can be defined by 
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      2

1 2 1 2, : Re 0M z z z f z    , 

which finishes the proof of Theorem 1. 

In this paper, we only deal with a smooth real hypersurface in 
2
. However, the statement of 

Theorem 1 remains valid even for higher-dimensional hypersurfaces.   

2. Proof of Theorem 1 

Proof of Theorem 1.  The proof of this theorem proceeds along the same lines as that of  Example 

2 in [9]. For the convenience of the reader, we shall provide some crucial arguments given in [9]. First 

of all, let  
1n n

M



  be a  sequence of real numbers such that

2 *2 ,nn

nM n n
 

  , where 

 
1n n





 is a sequence in  with n    as n  . Let  n

  be a strictly decreasing 

sequence of positive numbers with 0n   as n   such that, for each 
*n , there exists  a 

holomorphic function ng  on  
n

  satisfying that  ng n 
 
and  

   
,

0
0 | .

j n

n

M if j n
g

if n j


 

  

For instance, for every 
*n , we define  

   

1 1
:n n nn

n n

g z
z 

 


, where  
1

2

1
:n

n
nM

   and 

2 22 n

nM n   (see [9, Example 2]. 

For each 1, 2,n  , denote by  nf z  the C


-smooth function on  such that 

 
   1Re ,

0 .

n n

n

n

g z if z
f z

if z






 

 


 

Then, one can see that  and  nf n   and 

   
,

0 2

0 | .

j n

n

j

M
if j nf

z
if n j


 

 
  

                   (1) 

Now let  n  be an increasing sequence of positive numbers such that  

max 1, : , ,
k l

n
n k l

f
k l k l n

z z






  
    

   

, 
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where 

  represents the supremum norm. Let us define a function nf  by setting 

   2

1
:n n nn

n

f z f z
n




  for each 
*n . Then, by the repeated use of the chain rule, we obtain 

   2

1
, k 0,1,

k k

n n
nk n k k

n

f f
z z

z n z


 

 
 

 
. 

This together with (1) implies that 

  2
,

0 2

0 | .

k n

n

k

M
if k nf

n
z

if n k


 

 
  

 

Let us define a function f   by setting    
1

: n

n

f z f z




 . Then, for every ,k j , a direct 

computation shows that 

   

 

 

2 2 1
1 1 1

2 2
1 1

1 1

1 1

.

k l

n

k lk l k lk l
n n

k l n k l k l n k l
n n n k ln n n

k lk l
n

n k l k l
n n k ln

f
z

z zf f
z z

z z n z z n

f
z

n z z n

  





   


    
     

 

 
   



  
 

   


 

 

 

  

   

Hence, this ensures that  f C . 

Next, let us fix a sequence of prime numbers  
1n n

p



 with np   as n . Then it is easy 

to see that 

   

     

2

1

2 1

2

0 0

0 0 0

.
2

n n

n n

n n n n

nn n n

n

p p

kp p
k

p p p p

j p jp p p
j j p

n

n

f f
z z

f f f
z z z

Mp

p





 

  

 


 

  
  

  





   

We now define a hypersurface germ M  at  0,0  by setting 

    2

1 2 1 2, : Re 0M z z z f z     . 
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We shall show that  ,0M   . To do this, for each 2N  , consider a holomorphic curve 

 1 2,N z z   defined on 1: N

N

t t





 
  

 
 by 

     1 22
1

1
;

N

n nn
n n

z t g t z t t
n




   . 

Then, we have    
1

N n

n N

t f t 


 

  . Furthermore, since  nf n   for 1, 2,n  , it follows 

that   1N N     , and hence  ,0M   . 

We finally prove that there does not exist a (singular) holomorphic curve     2: ,0 ,0  , 

such that       . Note that, by a change of variables, we can assume that such a (singular) 

holomorphic curve    is represented by a parametrization     , mt h t t   for some positive 

integer m , where h  is a holomorphic function on a neighborhood of the origin in . Indeed, suppose 

otherwise that such a holomorphic curve exists. Then         Re mt h t f t o t  

     and 

thus  

        

     

   

0 0

0

2

1
0 Re 0

2

1
0 !

2

1
0 ! .

2 2

n n n

n n n

n n

n

n n

n

n

n

p m p m p m
m m

p m p m p m

z z

p m p
p

p m p

z

p m
p n

p m

n

h z f z h f z
z z z

h m f z
z z

Mp
h m

z p

 



  
   
  

 
 

 


 



 

Consequently, 
      2

0 !
2

nn
pp m n

n

Mp
h m

p
  , and moreover, since 

1
!

3 2

n n
n n

n
   

    
   

 and 

2
2 nn

nM n
 

  we have 

   

 

 

 

 

 

1

1

2

0 ! ! 2 1

1! !2 3 1 3

2

n n
n n

n

nn n

p p
p m p pm mm

p n np m mp m
n

nn n n n

h m M m p mp
p

p mp m p m p p m

 




   
 

. 

Therefore, we obtain  

   

 

100 1
limsup limsup lim

! ! 3

n n

n

n n

p mN p

N mp m
n

N p pn

hh
p

N p m




  

    . 
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This implies that the Taylor series of  h z  at 0 has radius of convergence 0, which is absurd since 

h  is holomorphic in a neighborhood of the origin. Hence, the proof is complete. 

Acknowledgments 

 It is a pleasure to thank Ninh Van Thu and Nguyen Ngoc Khanh for stimulating discussions on 

this material.  

References 

[1] J. P. D'Angelo, Real hypersurfaces, orders of contact, and applications, Ann. of  Math.  115 (1982) 615-637. 

[2] D. Catlin, Necessary conditions for subellipticity of the  -Neumann problem, Ann. of Math. 117 (1) (1983) 147-171. 

[3] D. Catlin,  Boundary invariants of pseudoconvex domains, Ann. of Math. 120 (3) (1984) 529-586. 

[4] D. Catlin, Subelliptic estimates for the  -Neumann problem on pseudoconvex domains, Ann. of Math. 126 (1) 

(1987) 131-191. 

[5] J.P. D'Angelo, Several complex variables and the geometry of real hypersurfaces, CRC Press, Boca Raton, 1993.  

[6] L.Lempert, On the boundary regularity of biholomorphic mappings, Contributions to several complex variables, 

Aspects Math. E9 (1986) 193-215. 

[7] J.E. Fornaess, L. Lee, Y. Zhang, Formal complex curves in real smooth hypersurfaces, Illinois J. Math. 58 (1) 

(2014) 1-10. 

[8] J.E. Fornaess, B. Stensones, Infinite type germs of real analytic pseudoconvex domains in 
3

, Complex Var. 

Elliptic Equ. 57 (6) (2012) 705-717.  

[9] K.T. Kim, V.T. Ninh, On the tangential holomorphic vector fields vanishing at an infinite type point, Trans. 

Amer. Math. Soc. 367(2) (2015) 867-885 


