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Abstract: Given a finite set D of n planar discs whose centers are distributed randomly. We are 

interested in the expected number of extreme discs of the convex hull of D. We show that the 

expected number of extreme discs is at most O(log2n) for any distribution. This result can be used 

to derive expected complexity of convex hull algorithms. 
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1. Introduction 

Convex hull problem of a finite set of points or discs is one of the most extensively studied and 

well-understood in computational geometry because of its both theoretical and practical significance. 

The problem of finding convex hull has been around for about 50 years and its applications have 

contributed in many different areas such as computer graphics [1], image processing [2, 3], and pattern 

recognition [4],…. Besides, the convex hull problem is often used as a preprocessing step or as the 

most important intermediate sub-problem in solving other geometric problems [5] such as Voronoi 

diagrams constructing, triangulation computing, the farthest pairs problem [6],…. In order to solve the 

convex hull problem, one usually finds the extreme points or discs, respectively. In this paper we are 

interested in the number of extreme discs assuming that the centers of the given discs are randomly 

distributed. 

Many algorithms finding the convex hull of a finite set of points have been proposed. It dated back 

to 1970 for the first publication on convex hull algorithm, which was called Gift-wrapping by Chand 
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and Kapur [7]. Graham proposed in 1972 a slightly more sophisticated but much more efficient 

algorithm named Graham’s scan for solving planar convex hull problem [8]. Another famous method 

for determining convex hull is the Quickhull algorithm, which was discovered independently in 1977 

by Eddy [8] and in 1978 by Bykat [9]. The convex hull problem continues being an attractive problem 

with many other known algorithms such as incremental convex hull algorithm (by Kallay [10]), 

marriage-before-conquest (by Kirkpatrick and Seidel [11]), Chan’s algorithm (by Chan [12]). Some of 

those algorithms are output-sensitive, i.e., their complexity depends on the number of extreme points. 

For a set of n finite points the number of extreme points can be as large as n. In 2004, Damerow and 

Sohler showed that number of extreme points in the average case is O(logn) [13]. From this it follows 

that Gift-wrapping and Quickhull algorithms have the average complexity of O(nlogn). 

The problem of finding convex hull for a set of discs becomes more challenging. A natural way is 

to modify the convex hull algorithms for a finite set of points in order to apply them for the case of 

discs. In 1992, Rappaport proposed an O(nlogn) algorithm for solving the convex hull problem for 

discs applying the idea of the divide-and-conquer algorithm [14]. The monotone chain algorithm, 

which was published in 1995 by Devillers and Golin [15], can be considered as a modification of the 

incremental algorithm when the input discs are lexicographically sorted by their radius. In 1998, Chen 

et al. introduced a parallel method for finding the convex hull of a planar discs [16]. The Quickhull 

algorithm can also be modified for the case of discs [17]. Similarly to the case of points, the convex 

hull of a set D of n discs in the plane can be represented in an ordered sequence by a list CH(D) of 

extreme discs. However, different than the case of points, each disc can contribute more than one arcs 

to the boundary of the convex hull and hence may appear more than once in CH(D). That means the 

cardinality of CH(D) may be larger than the number of discs. In this paper, when we write the number 

of extreme discs we mean the cardinality of CH(D). In [14, 15] the authors show that this number can 

be at most (2n - 1). The question on the expected number of extreme discs when the centers of discs 

are randomly distributed has not been addressed and is the topic of our paper. 

In this paper we consider a set { ( , ),    1,  2,  ...,  }i i iD d c r i n 
 
of n planar discs, where ( , )i ix iyc c c

and 0ir 
 
are the corresponding center and radius. Suppose that the centers are given randomly by an 

one-dimensional probability distribution function .  We show that the expected number of extreme 

discs is at most O(log2n) for any distribution function. 

The paper is structured as follows. Section 2 gives some definitions and geometrical notions that 

will be used in this paper. Section 3 considers the expected number of extreme discs of a disc set. Using 

this result, we discuss the expected complexity of algorithms computing convex hull of discs in Section 4.  

2. Preliminaries 

Throughout this paper, we focus on the problem of computing the number of extreme discs of a 

finite set of planar discs. For convenience of the reader, we recall in this section some necessary 

definitions. 

Definition 1 (see [18]) Let  be a set of planar points. A point p  satisfying 

conv( \{ })p p is called an extreme point of the conv .  

Let 
1 2{ , , ..., }nD d d d  be a set of n discs in the plane with ( , ),    1,  2,  ...,  i i id c r i n  , where 

( , )i ix iyc c c and 0ir   are the corresponding center and radius. Let convD be the convex hull of D, 

which is the smallest convex region containing all of the discs. Its boundary  convD consists of a  
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sequence of arcs and tangent lines connecting consecutive arcs. Assume that the set D does not have 

two coincident discs. We will denote by d  the boundary of a discs d.  

Definition 2 A disc d in D is called an extreme disc of convD if its boundary d  passes through an 

extreme point of convD and the disc d is not inside another disc in D. 

In Figure 1, 
2 4 7 8, , ,d d d d

 
are extreme discs. The disc d1 is not an extreme disc because it lies 

inside the disc d2. 

The convex hull of D can be represented in different ways. We represent it according to 

Rappaport’s representation [16] storing extreme disks of D in an ordered sequence by a list CH(D), 

that is, 
1 2 1CH( ) { , , ..., , }h hD d d d d  , where 

1 1,hd d 
 
such that 

td
 
and 

1td   
contribute two consecutive 

arcs on the boundary  convD  of convD for 1,2,..., .t h . Note that, an extreme disc may appear more 

than once in CH(D), so the list CH(D) may contain two elements 
id
 
and 

jd
 
having different indices 

i j  
but they are the same disc 

i jd d . In Figure 2, the set D has seven discs with 

1 4 2 4 7 4 3 1CH( ) { , , , , , , , },D d d d d d d d d  where 
1 2 3 4, , , d d d d  are extreme discs and 

4d  appears three times 

in CH(D).  

Note that the number of arcs on the boundary of the convex is equal to the number of extreme 

discs in CH(D). We also use the phrase “the number of extreme discs of D” to mean “the number of 

extreme discs in CH(D)”.  

 

 

          Figure 1. Extreme discs.     

         

                Figure 2. The convex hull of discs. 
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3. The expected number of extreme discs 

In this section we will derive an upper bound on the expected number of extreme discs of D 

assuming that the centers of discs are randomly given by a probability distribution function  . Denote 

as the set of the centers. We will prove that the expected number of extreme discs is at most 

O(log2n)  for any distribution function .   

As we already discussed before, an extreme disc may appear more than once in CH(D). The total 

number of extreme discs is however bounded by 2n-1.  

Lemma 1 (see [14, 15]) Let D be a set of n discs in 
2 .  Then the number of extreme discs of D is 

at most 2n-1, that is, |CH( ) | 2 1.D n     

In order to prove our main result, we need the following two lemmas. 

Lemma 2 (see [13]) Let  be  a set of n points in 
2

 chosen according to any probability 

distribution ∆. Then the probability for p being an extreme point of  is bounded by the 

following inequality 

log
4 .p

n

n


 

For simplicity of notation, suppose that the discs in D are sorted by decreasing radius with ties 

being broken arbitrarily 
1 2 ... .nr r r    Let Di  be the set of the first i discs and i  

be the set of centers 

of discs in Di. The basic idea of the algorithm in [15] is to construct step by step CH(Di) for 

1,2,..., .i n  It is shown in that paper that while going from CH(Di) to CH(Di+1) the number of arcs of 

the convex hull increases by at most 2. 

Lemma 3 (see [15]) We have 

f(Di+1) ≤ f(Di) + 2, 

where f(Di) and f(Di+1) are the number of arcs of convDi and convDi+1 respectively. 

Combining the above two lemmas we get our main theorem. 

Theorem 1 Let D be the set of n discs with the centers are chosen according to any probability 

distribution ∆. Then expected number of extreme discs of D is O(log2n). 

Proof  For simplicity of notation we also assume that the discs in the set D are arranged in non-

increasing order of the radius 
1 2 ... nr r r   . Let 

1 2{ , , ..., }i iD d d d
 
be the set of first i discs of D, 

1 2{ ,  ,  ...,  }nc c c  be the set of centers of discs in Di, and f(Di) and ( )if D are the number of arcs and 

expected number of arcs of convDi, respectively. 

The disc di+1 has the smallest radius among all disc in the set Di+1. Therefore, the necessary 

condition for di+1 to be an extreme disc of Di+1 is that its center ci+1 must be an extreme point of the set 

1.i  According to Lemma 1, the probability for ci+1 being an extreme point of the set 1i  satisfies 

1

1

log(i 1)
4 .

1
i

ic
i









 

Hence the probability for di+1 being an extreme disc of Di+1 is bounded above by 

1

1

log( 1)
4 .

1
i

i

D

d

i

i








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According to Lemma 3, by adding the disc di+1 to Di and calculating convDi+1, the number of arcs 

increases by at most 2, i.e.,  

f(Di+1) ≤  f(Di) + 2. 

Obviously, if di+1 is not an extreme disc of Di+1 then the number of arcs of convDi+1 is equal to the 

one of convDi. Only if di+1  is an extreme disc of Di+1, then the number of arcs of convDi+1 may 

increase compared to the one of convDi. Therefore we have  

                                                   1

11( ) ( ) 2 .i

i

D

i i df D f D 

                                                                                              (1)                   

Note that f(D) =  f(Dn) and  f(D0) = 0. Summing both side of the inequality (1) over 1,2,..., 1i n   

and eliminating the same terms on both side yields 

 

Since the number of arcs f(D) of convD is equal to the number of extreme discs in CH(D), our theorem 

is proven. 

4. On the complexity of algorithms computing convex hull of discs 

Recall that several convex hull algorithms are output-sensitive, i.e., their computational 

complexity depends on the number of extreme points. For example, Gift-wrapping algorithm [7] and 

Quickhull algorithm [19] have worst case complexity of O(nh), while ultimate planar convex hull 

algorithm [11] and Chan’s algorithm [12] have worst case complexity of O(nlogh), where n is the 

number of points in the original set and h is the number of extreme points. Since the expected number 

of extreme points is O(logn) [13], we automatically get the O(nlogn) expected complexity of Gift-

wrapping algorithm and Quickhull algorithm and O(nloglogn) of the ultimate planar convex hull 

algorithm and Chan’s algorithm. 

Similarly, the number of extreme discs of a disc set can be used to evaluate the computational 

complexity of convex hull algorithms for discs. As it is shown in Section 3 that the expected number 

of extreme discs is at most O(log2n), any convex hull algorithm for discs with a worst case complexity 

of O(nh), where n is the number of discs and h is the number of extreme discs, has the expected 

computational complexity of at most O(nlog2n). The Quickhull algorithm for discs [17] is an example 

of algorithms of that type. 

5. Conclusion 

In this paper we prove that the expected number of extreme discs of a set D of n discs is at most 

O(log2n). Consequently, the Quickhull algorithm for discs has an expected complexity of O(nlog2n). 

 

1

1

1

0

1

0

1

2

( ) 2

log( 1)
2 4

1

1
8log

O log .

i

i

D

d

n

i

n

i

n

i

f D

i

i

n
i

n

















 
  

 













N.D. Hoang, N.K. Linh / VNU Journal of Science: Mathematics – Physics, Vol. 35, No. 2 (2019) 88-93 93 

There is still a gap compared to the expected number of O(logn) for the case of points and it is a topic 

of future research. 

References 

[1] P. Bhaniramka, R. Wenger, R. Crawfis, Isosurface construction in any dimension using convex hulls, IEEE 

Transactions on Visualization and Computer Graphics 10 (2004) 130-141. 

[2] M. Nikolay, Sirakov et al., Search space partitioning using convex hull and concavity features for fast medical 

image retrieval, in: Proc. of the IEEE International Symposium on Biomedical Imaging, Arlington, USA  (2004) 

796-799. 

[3] B. Yuan, C.L. Tan, Convex hull based skew estimation, Pattern Recognition 40 (2007) 456-475.  

[4] S.G. Akl, G.T. Toussaint, Efficient convex hull algorithms for pattern recognition applications, Int. Joint Conf. on 

Pattern Recognition, Kyoto, Japan, (1978) 483-487. 

[5] J. O’Rourke, Computational geometry in C, 2nd edition, Cambridge University Press, Cambridge, 1998. 

[6] R. Suneeta, Convex Hulls: Complexity and applications (A Survey), University of Pennsylvania, 1993. 

[7] D.R. Chand, S. S. Kapur, An algorithm for convex polytopes, Journal of the ACM 1 (1970) 78-86. 

[8] R.L. Graham, An efficient algorithm for determining the convex hull of a finite planar set, Information 

Processing Letters 1 (1972) 132-133. 

[9] A. Bykat, Convex hull of a finite set of points in two dimensions, Information Processing Letters 7 (1978) 296-

298. 

[10] M. Kallay, The complexity of incremental convex hull algorithms in ,d
 Information Processing Letters 19 

(1984) 197. 

[11] D.G. Kirkpatrick, R. Seidel, The ultimate planar convex hull algorithm? SIAM Journal on Computing 15 (1986) 

287-299. 

[12] T.M. Chan, Optimal output-sensitive convex hull algorithms in two and three dimensions, Discrete & 

Computational Geometry 16 (1996) 361-368. 

[13] 7-V. Damerow, C. Sohler, Extreme points under random noise, European Symposium on Algorithms 3221 (2004) 

264-274. 

[14] D. Rappaport, A convex hull algorithm for discs, and application, Computational Geometry: Theory and 

Applications 1 (1992) 171-187. 

[15] O. Devillers, M.J. Golin, Incremental algorithm for finding the convex hulls of discs and the lower envelopes of 

parabolas", Information Processing Letters 56 (1995) 157-164. 

[16] W. Chen, K. Wada, K. Kawaguchi, D.Z. Chen, Finding the convex hull of discs in parallel, International Journal 

of Computational Geometry & Applications 3 (1998) 305-319. 

[17] N.K. Linh, Bài toán tìm bao lồi của tập hữu hạn các điểm hoặc các hình tròn, Đại học Khoa học Tự Nhiên, Đại 

học Quốc gia Hà Nội,  2019. 

[18] F.P. Preparata, M.I. Shamos, Computational geometry, 2nd Printing. Springer Verlag, New York, 1985. 

[19] W.F. Eddy, A new convex hull algorithm for planar sets, ACM Transactions on Mathematical Software: ACM 

TOMS (1977) 398-403. 

 

 

 


