

VNU Journal of Science: Mathematics - Physics

Journal homepage: https://js.vnu.edu.vn/MaP

Original Article

Electrochemical Performance of Fe₂O₃/AB-Based Composite Electrode

Trinh Tuan Anh, Bui Thi Hang*

International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), Hanoi, Vietnam

> Received 04 May 2019 Revised 29 May 2019; Accepted 01 June 2019

Abstract: In this study, Fe_2O_3 nanoparticles (nm) and microparticles (µm) were used as active materials and Acetylene Black carbon (AB) as an additive to prepare Fe_2O_3/AB composites to find a suitable material for Fe-air battery anode. The effects of grain size of iron oxide particles and additives on the electrochemical behavior of Fe_2O_3/AB composite electrodes in alkaline solution were investigated using cyclic voltammetry (CV), galvanostatic cycling and electrochemical impedance spectroscopy (EIS) measurements. The study results show that iron oxide nanoparticles provided better cyclability than iron oxide microparticles. The impedance of electrode increased during cycling, but the nm-Fe₂O₃/AB electrode gave smaller resistance than the µm-Fe₂O₃/AB one. The additive showed strong effects on the electrochemical behaviors of iron oxide electrodes. The AB additive enhanced the electric conductivity of Fe_2O_3/AB electrode and thus increased the redox reaction rate of iron oxide while K₂S interacted with and broke down the passive layer leading to improved cyclability and giving higher capacity for Fe₂O₃/AB electrodes.

Keywords: Fe_2O_3 nanoparticles, Fe_2O_3 microparticles, K_2S additive, Fe_2O_3/AB composite electrode, Fe-air battery anode

1. Introduction

High energy density for metal/air batteries has been the focus of attention in recent years for applications involving electric vehicles [1-3]. Iron is a potential candidate for metal/air battery anode and is also used in nickel/iron battery because of high theoretical energy (0.96 Ah/g) and low cost [4-

*Corresponding author.

Email address: hang@itims.edu.vn

https//doi.org/ 10.25073/2588-1124/vnumap.4348

7,8]. However, the problem of iron electrode is the passive layer of $Fe(OH)_2$ formed during cycling leading to a low utilization coefficient. Further, the potential of the Fe/Fe(OH)₂ couple is only slightly more negative than that of the hydrogen evolution potential in alkaline solution [5,7] thereby there is a simultaneous evolution of hydrogen during charging [8-9]. This is the cause of the low charge/discharge efficiency and high self-discharge rate of iron electrode. To overcome the limitations of the iron electrode, a number of additives are incorporated in the iron electrode during fabrication [6, 8-11] or in electrolyte [6, 10-14] or both [6, 10-11, 14]. To increase the active material surface area, in the present study, we prepared Fe₂O₃/C using Acetylene Black carbon (AB) and iron oxide for use as anode in Fe/air battery. In addition, K₂S is used as an additive to electrolyte to improve the limitations of the iron electrode.

2. Experimental

Fe₂O₃ nanopartiles (nm-Fe₂O₃) and microparticles (µm-Fe₂O₃)(Wako Pure Chemical Co.) and acetylene black (AB, Denki Kagaku Co. Ltd.) were used as the iron sources and carbon additives to prepare the Fe₂O₃/AB materials by mixing of 50 : 50 wt% Fe₂O₃ and AB followed by ball milling. The Fe₂O₃/ABcomposite electrodes were fabricated by mixing 90 wt% Fe₂O₃/ABmaterialsobtained after ball milling with 10wt% polytetrafluoroethylene (PTFE, Daikin Co.)binder followed by rolling and punching into the form of a pellet with 1 cm in diameter. Thus, in Fe₂O₃/AB composite electrodes, Fe₂O₃, AB and binder components are 45, 45 and 10 wt%, respectively.

To investigate the effect of Fe₂O₃ particle size as well as the K₂S additive on the electrochemical properties of the Fe₂O₃/AB electrodes, cyclic voltammetry (CV) studies have been carried out in three-electrode glass cells with Fe₂O₃/AB composite electrode as the working electrode, Pt mesh as the counter electrode and Hg/HgO as the reference electrode. The electrolyte was 8 moldm⁻³ KOH aqueous solution or 7.99 moldm⁻³ KOH + 0.01 moldm⁻³ K₂S aqueous solution. CV measurements were taken at a scan rate of 2 mV s⁻¹ and within a voltage range of -1.3 V to -0.1 V. Charge/discharge measurements were conducted on three-electrode glass cells. In the charge course, the current density of 50 mA cm⁻² was used with a cutoff potential of -1.2 V whereas in the discharge course, a constant current density of 2.0 mA cm⁻² was applied with a cutoff potential of -0.1 V. The electrochemical impedance spectroscopy (EIS) studies have been performed on a three-electrode glass cell assembly using Auto Lab system. The impedance spectra were recorded after the cell was cycled and stopped at open circuit potential (OCP) followed by a rest period of 1 hour. The AC perturbation signal has been fixed at 10 mV, and the frequency range was from 10^{-2} to 10^5 Hz in the EIS. In all electrochemical measurements, we used fresh electrodes without pre-cycling.

3. Results and discussion

Nanoparticles (nm) and microparticles (μ m) of Fe₂O₃ have been used as electrode active materials to investigate the effect of Fe₂O₃ particle size on their electrochemical properties. The SEM images of nm- Fe₂O₃ and μ m-Fe₂O₃ samples are shown in Figs. 1a and 1b, respectively. The nm-Fe₂O₃ particles are less than 100 nm and relatively uniform. They look like little balls. Unlike the nm- Fe₂O₃ sample, the SEM image of the μ m-Fe₂O₃ in Fig. 1b shows mixed particle size and shape. They consist of Fe₂O₃ flat flakes with dimensions ranging from several hundred nanometers to several ten micrometers. Different sizes and shapes of the nm-Fe₂O₃ and μ m-Fe₂O₃ samples shall affect the electrochemical characterization of the Fe₂O₃ electrode.

86

3.1. Effect of particle size and shape of iron oxide and additive on the electrochemical behavior of Fe_2O_3/AB composite electrode

The cyclic voltammetry (CV) measurements of the nm-Fe₂O₃/AB composite electrode (Fe₂O₃: AB: PTFE = 45:45: 10 wt%) are presented in Fig. 2a. On the oxidation scan from -1.3 V to -0.1 V, two oxidation peaks of Fe/Fe(II)(a₁), Fe(II)/Fe(II)(a₂) occur at about -0.9 V and -0.4 V, whereas on the reverse direction, only one reduction peak corresponding to Fe (III)/Fe(II)(c₁) occurs at about -1.0 V along with the hydrogen evolution peak. The reduction peak of Fe(II)/Fe(c₂) is completely masked by hydrogen evolution. Particularly, the oxidation peak a₂ is very large and broad compared to the a₁ peak. This may be due to the formation of Fe(OH)₂ which inhibits the oxidation of the inner layer of the iron leading to increase the overpotential of Fe/Fe(II) reaction. Consequently, a₂ peak includes oxidation reactions of both Fe/Fe(II) and Fe(II)/Fe(III). This is the reason why a₂ is a very large peak compared to a₁ peak. The redox peak currents increases during initial cycles and then decrease upon further cycling. In the first discharge, Fe(OH)₂ was formed on the surface of iron and carbon via an intermediate soluble species, $HFeO_2^-$. The passive layer Fe(OH)₂ layer was thin, the oxidation reaction rate was high. Further cycling, insulated Fe(OH)₂layer became thicker resulting in larger electrode resistance and consequently redox current decreased.

Figure 1. SEM images of (a) nm-Fe₂O₃ and (b) µm-Fe₂O₃ samples.

In order to investigate the effect of grain size and morphology of Fe_2O_3 on the electrochemical behaviors of Fe_2O_3/AB electrodes, CV measurements were carried out on the µm-Fe₂O₃/AB electrode (Fe₂O₃: AB: PTFE = 45:45: 10 wt%) and the results are presented in Fig. 3a.Similar to nm-Fe₂O₃/AB, the redox peaks a_1 , a_2 , c_1 also appear at around -0.9, -0.5 and -0.95 V respectively, and c_2 peak is masked by hydrogen peak. However, the current intensity of these peaks decreases with increasing cycle number.

Compared to nm-Fe₂O₃/AB sample (Fig. 2a), the redox peaks of μ m-Fe₂O₃/AB (Fig. 3a) electrode are very small. This proves that the size and shape of Fe₂O₃ particles strongly influence their electrochemical properties. In this case, nm-Fe₂O₃ particles exhibit better cyclability than μ m-Fe₂O₃. This could be explained in view of the Fe₂O₃ nanoparticles having a larger surface area than the Fe₂O₃ microparticles, so that the redox reaction rate of nm- Fe₂O₃ is greater than μ m-Fe₂O₃ and therefore it has better cyclability.

Figure 2.CV profiles of nm-Fe₂O₃/AB composite electrodes(Fe₂O₃:AB:PTFE = 45:45:10 wt.%) in (a) KOH and (b) KOH+K₂S electrolyte solution.

The role of adding K_2S in the electrolyte on the cyclability of the nm-Fe₂O₃/AB and µm-Fe₂O₃/AB electrodes have been investigated and the results are presented in Fig. 2b and 3b respectively. Comparing the CV results of the nm-Fe₂O₃/AB sample in KOH solution (Fig. 2a) with those in KOH+K₂S solution (Fig. 2b), it can be seen that adding K₂S to the electrolyte solution (2b), beside the appearance a_1 , a_2 and c_1 peaks, the reduction peak of Fe (II)/Fe(c_2) is observable and it is separated from the hydrogen evolution peak. This demonstrates that the amount of hydrogen evolution is partially suppressed and the reaction rate of Fe/Fe(II) couple is increased while its over-potential is decreased with the presence of K₂S in the electrolyte solution. In other words, the reaction rate of Fe/Fe(II) is increased and its overpotential is decreased by sulfide ion. There may be an effect of the adsorbed sulfide ion, which interacts strongly with Fe(I), Fe(II) or Fe(III) in the oxide film and promotes the dissolution of iron and enhance the bulk conductivity of the electrode, thereby improving cycleability [15-16].

Figure 3.CV profiles of μ m-Fe₂O₃/AB composite electrodes(Fe₂O₃:AB:PTFE = 45:45:10 wt.%) in (a) KOH and (b) KOH+K₂S electrolyte solution.

Further cycling, the current under these peaks decreased and deposition peak of iron c_2 is gradually masked by hydrogen. This suggests that the inner resistance of the electrode was increased due to the insulating of Fe(OH)₂ layer forming during the oxidation. When K₂S is present in the electrolyte solution, initially the reaction rates of the Fe/Fe(II) and Fe(II)/Fe (III) couples are increased, but on subsequent sweeping, the formed Fe(OH)₂ film is thicker, the passivation overwhelms the increase in the redox reaction rate supported by K₂S thereby reducing the redox current. Consequently, K₂S additive proved the positive effects on the electrochemical behaviors of nm-Fe₂O₃/AB composite electrode.

The CV results of μ m-Fe₂O₃/AB electrode in electrolyte containing S⁻² are depicted in Fig. 3b. In comparison to CV results in KOH electrolyte (Fig.3a), the CV profiles in both cases are relatively similar. When K₂S is introduced into the electrolyte solution (Fig. 3b), the a₁, a₂, and c₁ peaks still appear at the same potentials as in Figure 3a. As the number of sweeps increases, the current intensity in both couple peaks decreases. No significant differences are observed in the CV profiles of the μ m-Fe₂O₃/AB electrodes in KOH and KOH+ K₂S. Thus, for the μ m-Fe₂O₃/AB composite sample, the presence of K₂S in the electrolyte does not have a positive effect on the electrochemical behavior of μ m-Fe₂O₃ as well as the cyclability of the μ m-Fe₂O₃/AB electrode.

90

3.2. Electrochemical Impedance spectroscopy (EIS) of nm-Fe₂O₃/AB and μm -Fe₂O₃/AB composite electrodes in electrolyte with and without additive

Electrode resistance was determined for nm-Fe₂O₃/AB và μ m-Fe₂O₃/AB composite electrodes in KOH and KOH+K₂S electrolytes using electrochemical impedance spectroscopy (EIS). The EIS measurements were carried out before and after five initial cycles at open circuit potential (OCP) and the results are shown in Figs. 4 and 5 respectively. Before and after cycling, each spectrum consists of a semicircle in a high frequency region, which was assigned to the interfacial response, followed by a straight line in the lower frequency region corresponding to Warburg impedance. As the limitation of the apparatus was 100 Hz, straight line at lower frequencies is either short or not present.

Figure 4. Electrochemical impedance spectroscopy (EIS) of nm-Fe₂O₃/AB electrode (Fe₂O₃:AB:PTFE = 45:45:10 wt.%) in (a) KOH and (b) KOH + K₂S electrolyte solution

Figure 5. Electrochemical impedance spectroscopy (EIS) of μ m-Fe₂O₃/AB electrode (Fe₂O₃:AB:PTFE = 45:45:10 wt.%) in (a) KOH and (b) KOH + K₂S electrolyte solution.

In the case of KOH electrolyte (Figs. 4a and 5a), before cycling, the semicircle was observed with a straight line in the lower frequency region. After cycling, the semicircle was observable but not completely and semicircle diameter of the electrode after cycling is larger than that before cycle. This suggested that the resistance of electrodes increased after cycling and gradually increased with increase in cycle number. The semicircle diameter of nm-Fe₂O₃/AB electrode is a little smaller than that of μ m-Fe₂O₃/AB electrode in KOH suggests that nm-Fe₂O₃/AB electrode has lower resistance than μ m-Fe₂O₃/AB. These results are consistent with the CV results (Figs.2 and 3), as the redox

current decreased with repeated cycling and nm-Fe₂O₃/AB electrodes have better cyclability than μ m-Fe₂O₃/AB. This is reasonable since resistance of electrode gradually increased with repeated cycling and μ m-Fe₂O₃/AB electrodes give larger resistance than nm-Fe₂O₃/AB electrode.

In the case of electrolyte solution containing K₂S additive (Fig. 4b and 5b), the semicircle diameters of the electrodes after cycling are also larger than those of the electrodes before cycle similar to that observed in KOH solution thereby implying that the electrode resistance also increases during cycling in additive electrolyte. Remarably, the semicircle diameters of electrodes before and after cycling in the electrolyte containing K₂S (Figs. 4b and 5b) are larger than those in the base electrolyte (Figs. 4a and 5a). These results demonstrate that the resistance of the Fe_2O_3/AB electrode in the additive electrolyte is larger than that in the free additive electrolyte and can be ascribed to the S^{2-} ion in the electrolyte solution adsorbed on the surface of the Fe₂O₃/AB electrode causing an increase in the contact resistance between the electrode surface and the electrolyte solution. However the semicircle diameter of nm-Fe₂O₃/AB electrode before cycle is a little smaller than that after cycle while it is much smaller than that of μ m-Fe₂O₃/AB electrode after cycle. This tendency is consistent with the of CV profiles (Figs. 2b and 3b). In the case of nm-Fe₂O₃/AB electrode (Fig. 2b), the presence of the K₂S additive in the electrolyte enhances the redox reaction rate of the Fe₂O₃/AB electrode. Therefore, the presence of S^{2-} in the electrolyte solution on the one hand increases the resistance of the Fe₂O₃/AB electrode, but on the other hand it also enhances the redox reaction rate of the electrode. However, the current intensity still decreased with increase in cycle number due to the passive layer $Fe(OH)_2$ formed during the discharge. Adding K₂S into the electrolyte solution, initially the reaction rate of the Fe/Fe(II) and Fe(II)/Fe(III) couples increases, but the Fe(OH)₂ layer becomes thicker upon repeated cycling, passivation dominates the increase in the reaction rate leading to reducing redox current. In the case of μ m-Fe₂O₃/AB electrode, the presence of the K₂S additive in electrolyte did not provide any positive effect either in term of cyclability of iron (Fig. 3b) nor the impedance of electrode before and after cycling is too large (Fig. 5b) than that of nm-Fe₂O₃/AB electrode. Consequently, under these experimental conditions, nm-Fe₂O₃/AB electrode provided better cyclability, higher redox reaction rate than µm-Fe₂O₃/AB electrode.

3.3. Cycle performance of nm-Fe₂O₃/AB electrode

To obtain the cycle performance of nm-Fe₂O₃/AB electrode, the galvanostatic cycle measurement in KOH + K_2S solution was carried out, the results are presented in Figs. 6 and 7.

Figure 6. Charge-discharge curves of nm-Fe₂O₃/AB electrode in KOH + K₂S solution

Figure 7. Discharge capacity of nm-Fe₂O₃/AB electrode in KOH + K_2S solution.

One oxidation plateau was observed at about -0.65 V in the discharge curves (Fig.6) correspondence to the oxidation reactions of Fe/Fe(II) and Fe(II)/Fe(III). The plateau was shortened when repeated cycling. These results suggest that the discharge capacity decreased with further cycling. The changing of discharge capacity of nm-Fe₂O₃/AB electrode was consistent with that of CV profiles (Fig. 2b).

Fig. 7 show the cycle performance of the nm-Fe₂O₃/AB electrode in KOH+K₂S solution. High discharge capacity attained at the initial cycle and then gradually decreased with further cycling. These results demonstrate the capacity retention was low at this cycling condition. To meet the actual application requirements the capacity retention still need further improvements.

4. Conclusion

The size and morphology of iron oxide strongly affected the electrochemical properties of Fe_2O_3/AB composite electrodes. Fe_2O_3 nanoparticles provided higher redox reaction rate and better cyclability than Fe_2O_3 microparticles. Besides that, nm-Fe_2O_3/AB composite electrodes gave smaller resistance than μ m-Fe_2O_3/AB composite electrodes.

The nm-Fe₂O₃/AB composite electrodes in electrolyte containing K₂S additive showed the improved redox reaction rate of Fe/Fe(II) and Fe(II)/Fe(III) couples and significantly suppressed hydrogen evolution during cycling whereas μ m-Fe₂O₃/AB composite electrodes did not show such behaviors. It revealed that K₂S has positive effects on the electrochemical properties of nm-Fe₂O₃/AB composite electrodes but negligibly affect on the μ m-Fe₂O₃/AB one.

The resistance of the Fe₂O₃/AB composite electrodes after cycling is higher than that of before cycling in both electrolytes containing K₂S additive and free additive. The electrochemical impedance of the Fe₂O₃/AB electrodes in the electrolyte containing K₂S additive increased with respect to that in the basic KOH electrolyte. The nm-Fe₂O₃/AB composite electrode in electrolyte containing K₂S additive gave high discharge capacity at initial cycle and then gradually decreased with further cycling.

Acknowledgements

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.02-2018.04.

References

- [1] L. Ojefors, L. Carlsson, An iron air vehicle battery, J. Power Sources 2 (1977-1978) 287-296.
- [2] K.F. Blurtin, A.F. Sammells, Metal/air batteries: Their status and potential a review, J. Power Sources 4 (1979) 263-279.
- [3] A.M. Kannan, A.K. Shukla, Rechargeable Iron/Air cells employing bifunctional oxygen electrodes of oxide pyrochlores, J. Power Sources 35 (1991) 113-121.
- [4] K. Vijayamohanan, T.S. Balasubramanian, A.K. Shukla, Rechargeable alkaline iron electrodes, J. Power Sources 34 (1991) 269-285.
- [5] C. Chakkaravarthy, P. Periasamy, S. Jegannathan, K.I. Vasu, The nickel/iron battery, J. Power Sources 35 (1991) 21-35.
- [6] M. Jayalakshmi, B.N. Begumi, V.R. Chidambaram, R. Sabapathi, V.S. Muralidharan, Role of activation on the performance of the iron negative electrode in nickel/iron cells, J. Power Sources 39 (1992) 113-119.
- [7] A.K. Shukla, M.K. Ravikumar, T.S. Balasubramanian, Nickel-Iron Storage Batteries, J. Power Sources51 (1994) 29-36.
- [8] C.A. Caldas, M.C. Lopes. I.A. Carlos, The role of FeS and (NH₄)₂CO₃ additives on the pressed type Fe electrode, J. Power Sources 74 (1998) 108-112.
- [9] C.A.C. Souza, I.A. Carlos, M.C. Lopes, G.A. Finazzi, M.R.H. de Almeida., Self-discharge of Fe-Ni alkaline batteries, J. Power Sources132 (2004) 288-290.
- [10] G.P. Kalaignan, V.S. Muralidharan, K.I. Vasu, Triangular potential sweep voltammetric study of porous iron electrodes in alkali solutions, J. Appl. Electrochem. 17 (1987) 1083-1092.
- [11] K. Micka, Z. Zabransky, Study of iron oxide electrodes in an alkaline electrolyte, J. Power Sources 19 (1987) 315-323.
- [12] J. Cerny, Voltammetric study of an iron electrode in alkaline electrolytes, J. Power Sources 25 (1989) 111-122.
- [13] P. Periasamy, B.R. Babu, S.V. Iyer, Cyclic voltammetric studies of porous iron electrodes in alkaline solutions used for alkaline batteries, J. Power Sources 58 (1996) 35-40.
- [14] Bui Thi Hang, Tomonori Watanabe, Minato Egashira, Izumi Watanabe, Shigeto Okada, Jun-ichi Yamaki, The effect of additives on the electrochemical properties of Fe/C composite for Fe/air battery anode, J. Power Sources 155 (2006) 461-469.
- [15] D.W. Shoesmith, P. Taylor, M.G. Bailey, B. Ikeda, Electrochemical behaviour of iron in alkaline solutions, Electrochim. Acta 23 (1978) 903-916.
- [16] G.P. Kalaignan, V.S. Muralidharan, K.I. Vasu, Triangular potential sweep voltammetric study of porous iron electrodes in alkali solutions, J. Appl. Electrochem. 17 (1987) 1083-1092.