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Abstract: In the discretized Kaluza-Klein theory (DKKT), the gauge fields emerge as components 

of gravity with a single coupling constant. Therefore, it provides a new approach to fix the 

parameters of the Standard Model, and in particular the Weinberg angle. The study results show 

that in the approach using DKKT, the predicted value of Weinberg angle is exactly the one 

measured in the electron-positron collider experiment at Q = 91.2 GeV/c. The result is compared 

to the one predicted by the group theoretic methods. 
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1. Introduction  

 The Weinberg angel 
W  [1-3] is the most important parameter of the Standard model, which 

relates the two coupling constant g and g’ corresponding to the two underlying gauge groups  2
L

SU  

and  1
Y

U . It can be introduced by the following mixing of the gauge field 3W  and B  to form the 

physical photon and 0Z  fields  
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In terms of the coupling constants g and g’, the Weinberg angle can be expressed as 
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Therefore, it relates the masses of the W 
 and 0Z  as follows 

                          cosW Z Wm m                                                           (4) 

It can also relates the coupling constants g and g’ to the electric charge 

                                                                     sin cosW We g g                                               (5) 

Originally, since the Weinberg angle is a free unfixed parameter of the Standard Model, its value 

can only be determined by experimental measurement. It’s most precise measurements carried out in 

electron-positron collider experiments at a value of Q = 91.2 GeV/c, have given the value [4] 

                   
2sin 0.231200 0.00015W                                               (6) 

Due to the radiative corrections and renormalization effects, 
2sin W  is a running constant, giving 

different values at different energies. For example, at Q = 0.16 GeV/c the value of 
2sin W  is 

0.2397 0.0013  and at Q = 7-8 TeV/c, it is 0.23142. 

The theoretical prediction of the Weinberg angle is possible in unified theories when only one 

coupling constant is used instead of g and g’. In this paper, we will refer to the works of Fairlie [5, 6] 

as an example of such theories. Essentially, these works are based on the simple gauge group 

 2 |1SU  having only one coupling constant leading to the prediction of the Weinberg angle 

                              sin 0.25W                                                           (7) 

It is remarkable that the predicted value of the Weinberg angle is very far from the experimental 

value. It means that it is not at the measured electroweak scale energy, but at another one. At this 

energy scale the two gauge groups  2
L

SU  and  1U  are embedded into a single simple one, which 

gives only one coupling constant. By choosing different simple unification gauge group like  5SU , 

8E , … we might have different predictions, but since their energy scales are far from the electroweak 

one, those cannot reproduce the above experimental value. 

In this paper, we follow a different approach, using the discretized Kaluza-Klein theory developed 

by Viet and Wali [7-12] to predict the Weinberg angle. The new feature of this approach is that it is 

not a group theoretic but a geometric one. Surprisingly, this approach have given the value 
2sin W  as 

0.23077, which is very close to the experimental value. 

This paper organized as follows. In the section 2, we will briefly review the Discretized Kaluza-

Klein theory (DKKT). In the section 3, we will calculate the Weinberg angle in this framework. In the 

section 4, we will compare the obtained prediction with ones of Fairlie. In the section 5, we will 

discuss the results and physical implications.   
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2. Overview of discretized Kaluza-Klein theory 

In 1994, Landi, Viet and Wali [6] have revised the work of Felder, Frohlich and Chamseddine 

[13], which extend the non-commutative geometric model of Connes and Lott [14]. Surprisingly, the 

zero modes of the original Kaluza-Klein theory [15, 16] have emerged. This inspired Viet and Wali to 

develop the DKKT with a full physical content having a pair of gravity, vector and scalar fields. In 

each pair one field is massless and the other is massive. Based on these results, the NCG can be used 

to construct the theories in the space-time extended by discrete extra dimensions. The main advantage 

of DKKT is that it can avoid the infinite tower of massive fields in the usual Kaluza-Klein one with 

continuous extra dimensions. Discrete extra space-time means that one have different sheets of the 

usual space-time. For instance, if the extra dimension consists of two points, one must have two copies 

of the space-time. 

In order to incorporate the weak and strong interactions into this theory, one must extend it to the 

case of nonabelian gauge vector fields. In 2015, Viet and Du have proven that in the case of the 

discrete extra dimension of two points it is possible to extend DKKT to include the nonabelian gauge 

fields in the two cases i) The gauge fields must be the same for both sheets of space-time or ii) The 

gauge field on at least one sheet must be abelian. Viet, Dat, Han and Wali, have applied this result to 

construct the Einstein-Yang-Mills-Dirac theories, having QCD coupled to gravity and electroweak 

couple to gravity theories as special cases. Viet has also proposed to extend DKKT to include two 

discrete extra dimensions, each having two points, leading to a unified theory where all four 

interactions and the Higgs fields emerge as components of a generalized gravity. 

In this article we will focus on the case, when the electroweak interaction emerges as a component 

of gravity and couples to quarks and lepton as suggested in [12]. 

The construction is based on the spectral triplet. The first element of spectral triple is Hilbert space 

L R . So, the generalization of spinor is direct sum of two chiral spinors, 

                                  .
L

R





 
   

 
                                                         (8) 

The second element is the Algebra using for function operations 
L R  , where 

 4

I

 , I = L, R. The elements of this algebra is represented by 0-form diagonal matrix F, 

                          
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The third element is the Dirac operator, which that can be defined as an extension of the normal 

Dirac operator as . ΘD d e , where d 

   is usual Dirac operator in the four dimensions space-

time 
4
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                                          (10) 

With NCG space-time defined with the above spectral triplet, we can calculate the derivative of 

the 0-forms by acting the Dirac operator on function F as follows 
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                             (11) 

We can rewrite it in the following form  

                                                     
 5 †
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where 
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                                          (13) 

If we use the representation of Dirac matrix, DX   can be replaced by the generalized  -matrices 
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Since the derivative of a 0-form is a 1-form, we can extend the module of 1-forms, which is the 

generalization of the vector field in NCG to the following form 
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                                          (15) 

where 
MU  is generalized functions (0-forms). The 1-form U contains two vectors and two scalars. 

Now we can define the 2-form to be used as generalized field strength or curvature. The 2-forms 

must extend from the derivatives of 1-forms. We have to define wedge product of two 1-forms as 

follows 

                     5 5

5 5 0,

DX DX DX DX

DX DX DX DX

DX DX

   

 

   

   

 

                                          (16) 

               

     

     

 

5 55 5

5 555

1

2

1

2

U V U V U V U V

U V U V U V U V

U V U V

    

  

     

     

 

                             (17) 

where tidle operation "~" on a generalized function is defined as follows 

                                                         1 2

1
,

2
F f f f f f     e r                                                (18) 

and 
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Exterior derivative of 1-forms is given as 
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                             (21) 

3. The prediction of the Weinberg angle in DKKT 

The gauge field A  in DKKT takes the following form 
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So, the gauge fields  
La , 

Ra  and complex scalar field 
5a  are choosen as elements of the following 

2 2  matrices 
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                                             (23) 

Now we can introduce the physical fields  aW x  and  B x  by assigning 
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                            (24) 

where g, g   and 
kf  are parameters, H is the usual Higgs doublet. 

LY  and 
RY  are hypercharge 

opreators have the following forms 
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The field strength is defined through wedge product and derivative of gauge fields as follows 

                                                                           F DA A A                                                         (26) 

From Eq. (17) and (21), we can calculate the components of F as 
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Let us calculate explicitly each component in terms of the physical boson and Higgs fields. The 

first component is  
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where 
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The second component is 
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                                         
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The third component is 

                                            

 

  
  

 

† †

55 5 5 5 5

*

0 0

* 2 *

0 0 1 1

2
2 * *

0 0 1 1 2

2
2

2

2

.

k

k k k

k

k

k

k

F m a a a a

m f h h m

f h m f h m f h h

m
f h h h h

f

m
f HH

f

  

  

   

 
   

 

 
  

 

                                          (32) 

The Lagrangian of the gauge sector now is calculated as 

                                           

 
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Let calculate the first term in the Lagrangian, we have 
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so we can get the trace of equation (35) 

                                                   
2

† 2 5
'

4 6

g
Trace F F W W g B B

  

  
                                            (35) 



N.V. Dat / VNU Journal of Science: Mathematics – Physics, Vol. 35, No. 3 (2019) 110-120 

 

117 

The second term can be derive similarly 
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So we have 
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kTraceF F f H H

                                              (37) 

where the covariant derivative of the Higgs field define as 

                 .
2 2

i ig g
i A W   

 
     

 
                                          (38) 

The last term can be calculated as follow 

                    

2
2

55

2

† 4

55 ,k

k

m
F F f HH

f

 
  

 
                                          (39) 

                   55† 2

55 , .kTraceF F f V H H                                           (40) 

Finally, replace equation (36), (38) and (41) into equation (34) we obtain 

                                                  2 2
1 1

,
4 2

.
g

F G H H V H H



                                    (41) 

In order to have the right factors for kinetic terms of the gauge fields, we imply that 

                                                  

2

2

2

2

1 1

4 4

1 5 1 3
= g = g .

6 4 10

k

k

g
f g

f

g
g

  

 

                                          (42) 

Hence the Weinberg angle is calculated explicitly as follows 

                                            
2

2

2 2

' 3
sin 0.23077

' 13
W

g

g g
   


                                          (43) 
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The deviation of this prediction is just 0.1% compared to the experimental value. 

4. Comparison with the unified model based on the gauge symmetry SU(2|1) 

In this section we discuss about six dimensonal Yang-Mill theory introduced by Fairlie [5, 6]. The 

gauge field 
mA  , 1,...,6m   has the form [5] 

 

0
,

0

1,...,4.

gA g B I
A

g B

 



 



 
  

 



  (44) 

Where g and g   are the usual coupling constants. In this framework, the gauge fields A  and  B  

transforms under  SU(2) and U(1)  respectively, where  I  is the 2 2  unit matrix,     is an arbitrary 

parameter. The components in extra directions are specified as 

                                                    

5

6

0
,

0
.

i
A g

i k

A g
k













 
  

 

 
  

 

                                                       (45) 

Where    is the Higgs doublet and  k  is an ad hoc parameter. The field strength 
mnF  obtained by 

commutation of covariant derivative [5, 6] 
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         

   
         







        (46) 

where 

                  1 .D gA g B I                                                    (47) 

The Lagrangian can be calculated as follows 

                                                 

 
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1 1
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
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
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                             (48) 

 

The Weinberg angle is specified as follows 
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1/2

21
/ 1

2
.wtan g g 



 
   

 
                                           (49) 

We have two alternatives for the right kinetic terms of the gauge fields in  this theory with 2    

leading to the same value of  
wtan  .Therefore, we obtain 

                                                 2
2

2 2

/ 1 / 3

' 1
sin 0.25.

' 4
W

g g

g

g g




   




                                          (50) 

This value of is significantly greater than the experiment value. Therefore, this theory will be 

effective at an energy much higher than the electroweak one with the assumption that no new physics 

emerges in the TeV range.  

5. Conclusions 

The geometric approach discussed in this paper is based on the DKKT, with the internal space 

having only two points. It is straightforward to generalize into N points and arbitray number of the 

internal dimensions. DKKT is a good way to unify all the interactions and Higgs field without 

resorting to infinite tower of massive modes following Einstein's General Relativity. Surprisingly, the 

geometric approach give the result with excellence agreement with the experiments at the electroweak 

energy scale. So DKKT is valid at the currently accessible energy (unlike other unified theories). In 

the geometric approach, we don't need to assume higher gauge symmetries to predict the Weinberg 

angle. More phenomenological predictions of DKKT are in progress. 
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