

VNU Journal of Science: Mathematics - Physics

Journal homepage: https://js.vnu.edu.vn/MaP

Original Article

Investigation of Pressure Effect on the Structure of 3Al₂O₃.2SiO₂ System

Pham Tri Dung^{1,*}, Nguyen Quang Bau¹, Nguyen Thi Thu Ha², Mai Thi Lan²

¹VNU University of Science, 334 Nguyen Trai, Hanoi, Vietnam ²Hanoi University of Science and Technology, 1 Dai Co Viet, Hanoi, Vietnam

> Received 15 July 2019 Revised 19 September 2019; Accepted 08 October 2019

Abstract: This paper studies the structure of the Mullite system $(3Al_2O_3.2SiO_2)$ by Molecular Dynamics simulation (MDs) using the Born–Mayer–Huggins pair interaction and periodic boundary conditions. The simulation was performed with model of 5250 atoms at different pressure and at 3500 K temperature. The structural properties of the system were clarified through analysis of the pair radial distribution function, the distribution of coordination number, the bond angle and the link between adjacent TO_x units.

Keywords: Molecular dynamics simulation, Mullite, structure, Al₂O₃-SiO₂ system.

1. Introduction

In recent years, oxide systems (Al₂O₃, SiO₂, Al₂O₃-SiO₂) have received a lot of research attention of scientists. Al₂O₃-SiO₂ system with the Al₂O₃ content at 60 mol % (Mullite-3Al₂O₃.2SiO₂) has been studied by both experiments [1-3] and computer simulations [4-6] because it is a potential material for both traditional and advanced ceramics [7-9]. Further, thanks to its high-temperature mechanical strength, high creep and thermal-shock resistance, low thermal expansion and dielectric constants and good transmission in the mid-infrared range, $3Al_2O_3.2SiO_2$ is used widely in electronics, optical applications [10]. Therefore, the studying of structure of $3Al_2O_3.2SiO_2$ at different temperature and pressure conditions is necessary. The experiment studies [1] showed that the mean T-O distance (T is Al, Si) for Al_2O_3 -SiO₂ glasses increases from 1.61 to 1.79 Å with increasing Al_2O_3 content. The mean coordination number for pair T-O is 4.0 ± 0.1 for Al_2O_3 content less 40 mole %. Some studies showed

^{*}Corresponding author.

Email address: tridungmta3010@gmail.com

https//doi.org/ 10.25073/2588-1124/vnumap.4362

presence of oxygen tri-clusters (O-Al₃, O-Si₃, Al₂-O-Si, Al-O-Si₂ linkages) in structure of Al₂O₃-SiO₂ melt and glass [11, 12]. Recently, simulation studies [4, 5, 13, 14] have been focused on studying the spatial distribution of basic structural units TO_x as well as the determine the proportion of bridging oxygen (BO) and non-bridging oxygen (NBO) in Al₂O₃-SiO₂ system. These give useful insights into their structure. In this work, we use MD simulation to study of $3Al_2O_3.2SiO_2$ system at different pressures. The aim of this work is to serve the basics knowledge about structure of $3Al_2O_3.2SiO_2$ system under compression at atomic level. By analyzing of the partial radial distribution function, the coordinate number, the O-T-O and T-O-T bond angles distribution and the links between adjacent TO_x units, the microstructure properties of $3Al_2O_3.2SiO_2$ system will be clarified.

2. Computational procedure

The MD simulation of liquid $3Al_2O_3.2SiO_2$ is carried out in a 5250-atom system (500 Si atoms, 3250 atoms O and 1500 Al atoms) with periodic boundary conditions using Born – Mayer – Huggins potential. The detail about this potential can be found reference [4]. To integrate the Newton's equation of motion, Verlet algorithm is with the MD step of 0.48 fs. The first configuration is created by randomly placing 5250 atoms in a simulation box. This model is heated to 6000K to remove possible memory effect. Then the model is cooled down 3500K at ambient pressure (model M1). At this condition, a long relaxation $(10^6-10^7 \text{ MD steps})$ has been done to get equilibrium state of model M1 (using NPT ensemble). Next, the model M1 is compressed to different pressures (see table 1). Six models at different pressures and at 3500 K are relaxed for a long time to reach the equilibrium. The structural data of considered models is determined by averaging over 2000 configurations during the last 20000 MD steps.

Table 1. MD models for 3Al₂O₃.2SiO₂ system at 3500K and different pressures.

Models	M1	M2	M3	M4	M5	M6
Pressure (GPa)	0.14	4.62	7.28	13.31	21.36	31.34
Length of simulation box (Å)	41.76	39.67	36.54	36.26	36.01	35.55

3. Results and discussion

The structural characteristics of $3Al_2O_3.2SiO_2$ system is considered through the calculation of the partial radial distribution function as shown in figure 1 and table 2. The results show that as the pressure increases, the first maximum peak position of Si - O and O - Al pairs tend to shift to right. Namely, at 0.14 GPa, $r_{Si-O} = 1.58$ and $r_{Al-O} = 1.66$ Å, but at 31.34 GPa, $r_{Si-O} = 1.66$ and $r_{Al-O} = 1.74$ Å. This means that the average distance of Si - O and O - Al pair increases with pressure. In contrast, for the Si-Si, Si - Al, O - O and Al - Al pairs, under compression, the first maximum peak position of the above pairs decreases. At low pressure, the first maximum peak positions of Si-Si, Si - Al, O - O and Al - Al pairs decreases distance of Si-2.6 and 3.14Å, respectively. At high pressure, their positions are 3.16, 3.12, 2.52 and 3.08 Å, respectively. It means that the average distance of Si-Si, Si - Al, O - O and Al - Al pairs decreases with pressure. Moreover, the height of the first maximum peak of all pairs of atoms decreases and the width becomes wider when the pressure increases. This means that the degree of short-range order decreases as the pressure increases. For Si-Si, Si-Al, Al-Al and O-O pairs there is a significant change in the peaks after the first maximum peak of the radial distribution function in the pressure range from 7.28 GPa to 31.34 GPa. This means that the degree of intermediate-range order tends to become more orderly in the 7.28 – 31.34 GPa range.

Figure 1. The T-T, T-O and O-O pairs radial distribution functions for 3Al₂O₃.2SiO₂ system at different pressures (T is Al, Si).

P(GPa)	r _{Si-Si} (Å)	r _{Si-0} (Å)	r _{Si-Al} (Å)	r ₀₋₀ (Å)	r _{o-Al} (Å)	$r_{Al-Al}(Å)$
0.14	3.16	1.58	3.16	2.66	1.66	3.14
4.62	3.16	1.58	3.14	2.66	1.68	3.10
7.28	3.22	1.64	3.20	2.60	1.72	3.16
13.31	3.20	1.64	3.18	2.60	1.72	3.14
21.36	3.18	1.64	3.16	2.56	1.72	3.14
31.34	3.16	1.66	3.12	2.52	1.74	3.08

Table 2. The position of the first maximum peaks of the pair radial distribution functions at different pressures

Table 3 shows the change of the percentage fraction of structural units SiO_x and AlO_y as a function of pressure. It can be seen that, at low pressure, most of Si atoms is surrounded by 4 O atoms forming SiO_4 (92.99%) structural unit. And most of Al atoms is surrounded by 4 and 5 O atoms forming AlO_4 (66.91%) and AlO_5 (21.31%) structural unit, respectively. The fraction of the other structural units is negligible. It means that the structure of $3Al_2O_3.2SiO_2$ system is build by mainly SiO_4 , AlO_4 and AlO_5 structural units at low pressure.

Pressure (GPa)	SiO_4	SiO ₅	SiO ₆	SiO ₇	AlO ₃	AlO ₄	AlO ₅	AlO ₆	AlO ₇
0.14	92.99	6.72	0.18	0.00	10.38	66.91	21.31	1.36	0.03
4.62	72.85	25.30	1.72	0.01	3.26	51.36	38.96	6.20	0.20
7.28	8.32	37.70	52.87	1.09	0.04	5.53	29.52	53.29	10.69
13.31	5.95	34.34	57.98	1.70	0.01	4.03	26.39	55.66	12.71
21.36	6.06	30.71	61.18	2.04	0.08	3.77	22.66	56.62	15.26
31.34	2.92	19.02	72.90	5.06	0.02	2.33	16.78	55.33	22.87

Table 3. The percentage fraction of structural units SiO_x (x=4 \div 7) and AlO_y (y=3 \div 7) in 3Al₂O₃.2SiO₂ system.

As pressure increases, from 0.14 GPa to 7.28GPa, the fraction of AlO₄ and SiO₄ units decrease sharply, but the fraction of AlO₆, SiO₆ units increase sharply. It means that, the local environment of Si, Al has a significant change under compression. Continue to compression up to 31.34GPa, the result shows that most of Si and Al atoms is surrounded by six O atoms (72.90% SiO₆, 55.33% AlO₆). Besides the fraction of AlO₅, AlO₇ and SiO₅ units are 16.78%, 22.87% and 19.02%, respectively. Therefore, at high pressure, the structure of $3Al_2O_3.2SiO_2$ system comprises mainly of SiO₆ and AlO₆ units (T is Al, Si).

Figure 2. Distribution of O-Al-O bond angle in AlO_x (x= $4 \div 7$) structural units at different pressures.

Figure 3. Distribution of O-Si-O angle in SiO_x ($x=4 \div 6$) structural units at different pressures.

We have calculated the bond angles in structural units at different pressures. Figure 2 and Figure 3 describe in detail the O-Si-O and O-Al-O bond angle distribution in AlO_x units and SiO_y units, respectively under compression. The results show that at low pressure, the O-Al-O bond angle distribution in AlO₄, AlO₅, AlO₆ and AlO₇ units has a peak at 100, 90, 80 and 70 degrees, respectively. The O-Si-O bond angle distribution in SiO₄, SiO₅, SiO₆ units has a peak at 105, 90 and 90 degrees, respectively. Under compression pressure, the position of peaks is almost not change. However, the form of distribution is slightly changed with pressure. The results also show that the structural units can connect to each other via O atoms to form network structure of 3Al₂O₃.SiO₂ system. So, to clarify the intermediate-range order structure, we analysis the distribution of T-O-T bond angles in OT_n units at different pressures $(n=2\div4)$ (see figure 4). It can see that at low pressure, the T-O-T bond angle distribution in OT₂ and OT₄ units has a peak at 155 and 90 degrees, respectively. when the pressure increases to 31.34GPa, they have a peak at 165 and 100 degrees, respectively. For T-O-T bond angles in OT_3 unit, T-O-T bond angle decreases from 120 to 105 degree under compression. In order to clarify Mullite's network structure, we visualize the network structure for 3Al₂O₃.2SiO₂ system at pressures of 1.41 and 21.36GPa (see figure 5). It reveals that under compression, the structure of the $3Al_2O_3.2SiO_2$ system tends to become more order.

Figure 4. Distribution of T-O-T bond angles in OT_y (y=2÷4) units at different pressure pressures.

Figure 5. Snapshot of structural models for 3Al₂O₃.2SiO₂ system (Si, Al and O atoms in blue, purple and black.

Table 4. The everage number of edge sharing bonds (N_e) and face sharing bonds (N_f) per TO_x units. AlO_x-AlO_x are the links between two AlO_x units; AlO_x-SiO_x are the links between AlO_x and SiO_x units

Drossuro (CDa)	AlO _x -AlO _x		AlO _x -SiO _x	
riessule (Gra)	Ne	N_{f}	Ne	N_{f}
0.14	0.464	0.016	0.067	0.001
4.62	0.619	0.017	0.150	0.005
7.28	1.484	0.003	0.692	0.001
13.31	1.541	0.003	0.697	0.000
21.36	1.752	0.012	0.792	0.003
31.34	1.967	0.013	0.880	0.001

To clarify the linkage among structural units TO_x , we have investgated the all the bond kind between TO_x . It reveals that most of linkages between TO_x units are the corner sharing bonds. The edge and face sharing bonds only exist between AlO_x units and between AlO_x and SiO_x units. The edge- and face-sharing bonds amongst AlO_x and between AlO_x and SiO_x is significant and increases strongly with pressure (see table 4). At low pressure, each AlO_x unit has only about 0.46 the edge-sharing bond and it increases to around 2 at 31.34 GPa. The number of face sharing bonds is very little, about 0.01 face bond per AlO_x unit. Similarly, each TO_x unit has 0.067 the edge-sharing bond and it increases to 0.880 at 31.34 GPa. the average number of face sharing bonds per TO_x units is negligible.

4. Conclusion

In this paper, the structural properties of $3Al_2O_3.2SiO_2$ system under compression have been clarified. At low pressure, structure of $3Al_2O_3.2SiO_2$ is mainly formed by AlO_4 and SiO_4 units. At high pressure, it is mainly formed by AlO_6 and SiO_6 units. This shows structural transition from tetrahedral to octahedral network. The average distance of Si-O, O-Al pairs increases with pressure. In contrast, the average distance of Si-Al, O-O, Si-Si and Al-Al pairs decreases. The link between TO_x units via edge, face-sharing bonds lead to decrease of T-T distance. At low pressure, the adjacent TO_x units are mainly

linked to each other via the corner-sharing bonds. However, at higher pressure, they can link to each other via the corner-, edge-, face-sharing bonds. Under compression, the structure of the $3Al_2O_3.2SiO_2$ system tends to become more order.

Acknowledgments

This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grand number 103.05-2018.37.

References

- M.C. Wilding, C.J. Benmore, J.K.R. Weber, High-Energy X-ray Diffraction from Aluminosilicate Liquids, J. Phys. Chem. B, 114(2010) 5742–5746.
- [2] M.Schmucker, H.Schneider, New evidence for tetrahedral triclusters in aluminosilicate glasses, J. Non-Cryst. Solids, 311(2002) 211-215.
- [3] B.T. Poe, C. Romano, N. Zotov, et al, Compression mechanisms in aluminosilicate melts: Raman and XANES spectroscopy of glasses quenched from pressures up to 10 GPa, Chem Geol, 174(2001) 21–31.
- [4] V.V. Hoang, Dynamical heterogeneity and diffusion in high-density Al₂O₃-2SiO₂ melts, Physica B, 400(2007) 278–286.
- [5] A.Winkler, J. Horbach, W. Kob, et al, Structure and diffusion in amorphous aluminum silicate: a molecular dynamics computer simulation, J Chem Phys, 120(2004) 384–393.
- [6] T. Takei, Y. Kameshima, A. Yasumori, K. Okada, Calculation of metastable immiscibility region in the SiO₂-Al₂O₃ system using molecular dynamics simulation, J. Mater. Res, 15(2000) 186–193.
- [7] H. Schneider, J. Schreuer, B. Hildmann, Structure and properties of mullite, Journal of the European Ceramic Society, 28(2008) 329–344.
- [8] M.F. Serraa, M.S. Conconia, M.R. Gaunaa, G. Suáreza, b, E.F. Agliettia, N.M. Rendtorffa, Mullite (3Al₂O₃·2SiO₂) ceramics obtained by reaction sintering of ricehusk ash and alumina, phase evolution, sintering and microstructure, Journal of Asian Ceramic Societies, 4(2016) 61-67.
- [9] L. Cormier, D.R. Neuville, Relationship between structure and glass transition temperature in low-silica calcium aluminosilicate glasses: the origin of the anomaly at low silica content, J Am Ceram Soc, 88(2010) 2292–2299.
- [10] I.A. Aksay, D. M. Dabbs, M. Sarikaya, Mullite for structural Electronic and Optical applications, J Am Cerom Soc, 74(1991) 2343-2358.
- [11] Patrick Pfleiderer, Jürgen Horbach, Kurt Binder, Structure and transport properties of amorphous aluminium silicates: Computer simulation studies, Chemical Geology, 229(2006) 186–197.
- [12] M. Schmucker, H. Schneider, New evidence for tetrahedral triclusters in aluminosilicate glasses, J. Non-Cryst. Solids, 311(2002) 211-215.
- [13] N.V. Yen, M.T. Lan, L.T. Vinh, N.V. Hong, Structural properties of liquid aluminosilicate with varying Al₂O₃/SiO₂ ratios: Insight from analysis and visualization of molecular dynamics data, Modern Physics Letters B, 31(2017) 36-50.
- [14] J.R. Allwardt, J.F. Stebbins, B.C. Schmidt, et al, Aluminum coordination and the densification of high-pressure aluminosilicate glasses, Am Mineralogist, 90(2005) 1218–1222.

78