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Abstract: This paper establishes the governing equations of rectangular plates of variable
thickness subjected to mechanical load by using the classical plate theory, the geometrical
nonlinearity in von Karman-Donnell sense. Solutions to the problem are derived according to
Galerkin method. Nonlinear dynamic responses, critical dynamic loads are obtained by using
Runge-Kutta method and the Budiansky—Roth criterion. The effect of volume-fraction index k and
some geometric factors are considered and numerical results are presented.
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1. Introduction

Rectangular FGM plates are used extensively in spacecraft, nuclear reactors or defense industry and in
civil engineering, v.v. Today, analysis of vibration and dynamic stability of FGM plate structures has been
studied by many authors.

Firstly, for dynamic problems of constant thickness plate structures, Ungbhakorn et al. [1] investigated
thermo-elastic vibration of FGM plates with distributed patch mass based on the third-order shear
deformation theory and Energy method. Talha et al. [2] analyzed free vibration of FGM plates by using
HSDT and finite element method. Duc et al. used the Galerkin method and the higher-order shear
deformable plate theory to study the post-buckling of thick symmetric functionally graded plates resting on
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elastic foundations under thermomechanical loads [3] and buckling and post-buckling of thick functionally
graded plates subjected to in-plane compressive [4]. Bich et al. [5] examined nonlinear post-buckling of
eccentrically stiffened functionally graded plates and shallow shells based on the classical shell theory and
the smeared stiffeners technique. Hebali et al. [6] and Mahi et al. [7] studied static and free-vibration of
FGM plates under mechanical load based on hyperbolic shear deformation theory. Benferhat et al. [8] used
Hamilton’s principle and higher-order shear deformation theory to study vibration of FG plates resting on
elastic foundation. R. Kandasamy et al. [9] used FSDT and finite element method to investigate free
vibration and thermal buckling behavior of moderately thick FGM plates in thermal environments.

Secondly, for dynamic problems of variable thickness plate structures, E. Efraim et al. [10] based on
the FSDT to study vibration of variable thickness thick annular isotropic and FGM plates. S. H. Hosseini-
Hashemi et al. [11] based on the classical plate theory and differential quadrature method (DQM) to deal
with free vibration problem of radially FG circular and annular sectorial thin plates with variable thickness
resting on elastic foundations. M. Shariyat and M. M. Alipou [12] studied vibration of variable thickness
two-directional FGM circular plates resting on elastic foundations by using power series. V. Tajeddini et al.
[13] employed linear elastic theory and Ritz method to investigate 3D free vibration of thick circular FG
plates with variable thickness. F. Tornabene et al. [14] examined natural frequencies of FGM sandwich
shells with variable thickness by using HSDT and local generalized differential quadrature method. A. H.
Sofiyev [15] used Ritz method to study buckling of continuously varying thickness orthotropic composite
truncated conical shell under mechanical load. A. R. Akbari and S. A. Ahmadi [16] analyzed buckling of a
FG thick cylinder shells with variable thickness under mechanical load by using DQM. P. T. Thang et al.
[17] investigated effects of variable thickness and imperfection on nonlinear buckling of S-FGM
cylindrical panels subjected to mechanical load based on the classical shell theory and using Galerkin
method. These authors also investigated effect of variable thickness on buckling and post-buckling
behavior of S-FGM plates resting on elastic medium [18].

In conclusion, according to the above review reveals and author's knowledge, there were many studies
on FGM plate and shell structures but has no publication on nonlinear vibration and dynamic stability of
FGM rectangular plate with variable thickness under mechanical load. In this paper, we investigate
nonlinear vibration and dynamic stability of rectangular plates with variable thickness subjected to
mechanical load. The governing equations are established based on the classical plate theory. Nonlinear
dynamic responses are obtained by using Galerkin method and Runge-Kutta method. Critical dynamic
loads are obtained by using the Budiansky—Roth criterion.

2. Governing equations

Fig. 1. Configuration of variable thickness FGM plate.
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Consider a rectangular FGM plate with variable thickness subjected to mechanical load. The thickness
of the plate can be expressed as: h=h(x,y) (Fig. 1a).

Assume that, plate made of FGM with the volume fraction of ceramic V, (z)changes according to the
following rule:
k
Vo=| 2ot 1)
2 h(x,y)

With the above rule, the Young’s modulus E, Poisson ratio v of FGM plate can be expressed as:

k
E(Z):Em'\/m+Ec'\/c=Em+(Ec_Em)(1+ : ]

2 h(x,y)
k
/0(2)=pm.vm+/00-Vc=/’m+(’o°_pm)(%+h(xZ y)j .

k
”(Z)Zum'vm*”c-vc=Um+(vc—vm)£%+h(z )j
X,y

According to [19], the strains at a distance z from the middle surface can be expressed as:
& =& +zk; with (i j= xx, yy, Xy)

0 0 0
or E =Ex T 2Ky &y =& T 2Ky 7y =¥y T 2Ky, 3)

. 0..0..0 H : . H
Where: &,,;&,,;7,, , are the strains at the middle surface and k,,;k, are curvatures and kxy is the

twist. They are related to the displacement components u,v,win the x,y,z coordinate directions as:

. au 1(aw)2,0 ov 1(53\/\/}2,0 U v owow
= =—+ t—t——

Ex =~ — | T T Wy T~ T
ox 2\ ox ooy 2\ oy Yooy ox  oOx oy %)
2 2 2
ko = LW k, =-2W. P L
OX oy oxoy
Hooke's law applied to FGM plate under mechanical loads can be expressed as follows
Oy £ v 0 Exy
oyt=—2tv 1 0 |{e, hay {o}=[%]{e} (5)
Ty 1=ug 1-v | |y
0 0 — | U¥
L 2

Integrating the stress-strain equations through the thickness of the plate we obtain the mechanical
behavior equations of FGM plate with variable thickness:
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- E.—-E, )k
where: E1=Em+EC Em;E2= (E.—En) ;E3:&+(Ec_Em) 1 _ 1 I 1
(k+1) 2(k+1)(k +2) 12 k+3 k+2 4(k+1)

Internal force and moment resultants in Eq (8) can be expressed as:
N, = Aﬂ(ggx + U.Sgy)-i- Bll(kxx + U.kyy)
Nyy =Aﬂ(53y +U.SSX)+ Bll(kyy +U.kxx) )
Ny = Ags '7>(()y + Bgg Ky

=B, (an + u.ggy ) +Dy; (kXX +vk )
M, Bll(g +v.e )+D11(k +ukXX) (10)
M,, = Bﬁe.yxy + Dgg K

Xy

Based on the classical plate theory, the motion equations of variable thickness FGM plate can be
given as:

oN,  ON, d°u
—X 42 —p.h(Xy)—
o Py ph(x,y) o
oN,, oN 2
2 S ik y) O
X 0y (11)
2 aZM aZM 2 2 2 2
M 20 Ty N 2 an, D% N, O i y) 2
ox ooy oy ox oxoy 7oy ox
2W 2W
--qh(xy)ay ghwy) +%mhﬂy%—
h(x,y)/2 _
here: p, = I P(Z)-dz =Pm T ,0ck /1)m
—h(x,y)/2 *

Substituting Eq. (9) and Eg. (10) in to Eq. (11) and consider Eqg. (4) then, Eq. (11) can be rewritten as:

Ly(U) + Ly (V) + Lig (W) + B (W) =p1.h<x,y)2t—§‘

2
L (U) + LypV) + Ly (W) + Py (W) = py.h(x, y)%
(12)

2

Ly (U) + Lgp (V) + Lgg

2 2

—quw +%—Amxw

b 2eph(x, Y) —
where:

a ou o a ou
Ail A\ae AYSG

82
LU)=Avg o+ TS A e
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Egs. (12) are the basic equations used to investigate the nonlinear dynamic response of variable
thickness FGM plates subjected to mechanical load.

For simplicity, we only consider the simply supported rectangular FGM plate with variable thickness
which linearly changes in the x-axis (Fig. 1b). Assume that, the thickness of the plate can be determined as
follows:

h(x) = (hlah jx+h (13)

Where: a is the length of the plate’s edge, h: and ho are the thickness of FGM plate at x=0 and x=a,
respectively.

Then, Egs. (12) will be rewritten as:

2
I, (U) + 13, (V) + 13(W) +Q (W) = p,. h(X)a—

pey
I (U) + 15 (V) + 15(W) +Q, (W) =P1-h(x)¥

131 (U) + 15, (V) + 135 (W) + Qg (W) +Qy (W?) + Qs (U, W) + Qg (V, W)

2
—qh(x)iy—“! - h(0 S + 260000 5

(14)

o*w

in which:
_E.h(x) &°u Ei-h(x)@ E ( jé_
W)= o 2r0) oy 102l a Jox
Lvy< OB St oE, ( ]@
o 2(1-0?)  oxdy 1 oy
| (W):_Ez.hz(x) a3w+ o*w | 2E h(x) h, — hO azw
B 1-02 | o oxoy? ) 1-0°
0L (W) = E, h(x) ow d*w o ow o*w . E,.h(x) 8\N62W awa2
' x ol oy oxay ) 2(1+v)| oy axay X oy

) w(%ﬂ
() = (1;(1)_%?)@ aaxz;y * z(fi'u)[hl 2 j%u
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Eqgs. (14) are basic equations used to investigate nonlinear dynamic responses of FGM plates with
thickness linearly changes in the x-axis subjected to mechanical load.
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3. Solution method

Consider a variable thickness FGM rectangular plate subjected to uniformly distributed pressures p(t)
and q(t) in x and y direction. The exciting force go(t) acting on the plate’s surface.

The plate is simply supported on 4 edges, then the boundary conditions are:
w=0,M,, =0;N,, =—ph(x) at x =0 and x=a.
w=0,M, =0;N,, =-gh(x) aty =0 and y=b.

Satisfying boundary conditions, the deflection of the plate can be chosen as:

mzx __ nrzy. mx ry

u:Umn(t)cos%sinnby V= an(t)smTcos W= Wmn(t)sstm (15)

Where: m, n are the numbers of half-wave along the x and y direction, respectively.
Substituting Eq. (15) into Eq. (14) then applying Galerkin procedure, at the same time, ignoring inertial
components along x and y axes (because of u<<w, v<<w) [20], we obtain:

LU +1,V +1,W+RW? =0

LU + 1,V + W+ R,W? =0 (16)
2 3 4abg, .d’w .« dw
I U + 15,V +1;W+ RWT + R,W° + RU.W + RV . W+ =P 260 ——
mnz dt
In which: p, m X
8
Ez® (h +hy) o 2 ). E,.mnz?(h +hy)
l, =——————22((1- b? +2 A, =1, =—
T 16(1-v)ab ((2-0)mv? + 2na’)ihe =L 16(1-v)
+3)(h —h, )’ 3 _h )
m*z* )(hl 0) + E,mz"hhy (m2b2+n2a2)— Ezﬂ(hl ho) (m2b2+un2a2)
24 1-0%)ma’h 4(1-0° )ba® 4(1-0° )ma’p
E,z%(m?b?(1—v)+2n2a?)(h, +h
R = (h1+h0) ((30—1)n2a2—4m2b2);I22:— lﬂ( (1-v) )(hl 0);
9na2b(l v ) 16(1—uz)ab
2_2 2
= E2n71'(2m T —3)(h1_h0) N E2n7r3h1h0 (n2a2+m2b2)+E2(hl_h°)2 nz
24(1-0% )m*b’a 4(1-0*)b%a 4(1+v)a
R, =— Er(hrhy) (4n%a? — (30 -1)m?p? )

(1—02)9mb2a

27z(hl—h0)2(2m27r2—3)(m2b2+n2a ) E,hhmz® ( >+n’a )+ E,nz(h —h, )’
24(1-0* )mba’ 4(1-v%)a% (1+v)4mb

31~
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Ene(h—hy) (2m°2° -3)  E,z%nhh,

E,nz(h —h, )’
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(mzb2 + n2a2)+ (1-v) 24(1_02)61
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o (1-v?)4a%® {(hl_h())( 4m? ]+(hl_h°) ho[ 2m’ } 2 (Bhl_h())}

|32 -

_3E3”2(hl+ho)(h1_h0)2 212 | 1242 3E3”2(hl+ho)(hl_ho)2 2,2, 022
(1—02)4a2b (m b +n‘a )+ 4(1_02)a3b (un a“+m<b )+

+(hl';20b)” (pm2b2+qn2a2)

8E, (h, —h,)’

R, = (mzb2 +un2a2)+

2E,7°m |:9m272'2 -

28 2 2.2 212
-h 6h,h -1 —2m<b
3(1—uz)na3b 27m? 72 (hl 0) +6hy 0}((0 )n a )

(1— v )9a3bmn

4E,nz*  [9m*z%-45

+ 2 3 2_2 (
9(1—1) )mb al 9m’z

. 32E, (h, —hy)
27mnb(1—u2)

h—h )’ + thoj((l— 6v)m*b? —n’a’)
[ (1-v)n?a’h, +2m°° (b —h, ) |

_2E17r2(h1 + ho)(n“a4 + m4b4) (1-30) E, (h +hy)nmz?
9(1—1)2)mna3b3 9(1—1)2)ab

4 =

n _ 2E7(h+hy)

9(1 2)nba2 (4b2m2 +(1+3u)n2a2) R, =M[(1+30)m2b2 —4n’a’]
%

9(1—1)2)mab2

The first two equations of Eq. (16) are two linear algebraic equations for the amplitudes Umn and V.
Solving Umn and Vi, in terms of Wiy, then substituting into the third equation of Eq. (16), we obtain:

«d?w .« dw ) s 4abg
——+2gp, — +aW+a,W* +a,W° = 0 (17)
pl dt2 pl dt al 2 3 mn;zz
In which:
— |34 (|12|23'I13|22 ) +1a (I13|21'|11|23)
e 1oL, |
11122 7holo1
a —-R.— R1(|32|21 - |31|22)+ R, (|31|12 - |32|11) +Rg (|12|23 - |13|22)+ Rs (|13|21 - |11|23)
2 =g
|11|22 - |12|21
- R Ry (R2|12 - R1|22)+ Rs (R1|21 - R2|11)
B= L, —I|
11722 7 112121

Vibration analysis

Suppose that the plate is subjected to uniform compression loads g(t) and p(t) on each edge and the
exciting force in form qo=QsinQt, Eq.(17) can be rewritten as follows



40 K.V. Phu, L.X. Doan / VNU Journal of Science: Mathematics — Physics, Vol. 35, No. 3 (2019) 30-45

« d?w dw

P g 2o T AW a, W a W _ 4abQsin Ot

18
mnz? (18)

* Natural-vibration frequency of plate: the natural frequency of the variable thickness FGM plate can

be defined as.
@y =vla, ! p (19)

* Nonlinear response of variable thickness FGM plate:

Nonlinear responses of variable thickness FGM plates are received from Eqg. (17) by using Runger-
Kutta method.

Dynamic stability analysis

For dynamic stability analysis, this paper studies a rectangular plate with variable thickness subjected
to linear compression in terms of time p(t)= -cit and q(t)= -czt. In which, ¢; and ¢, are loading speed.
Dynamic responses of plate can be determined by solving equation (17). The dynamic critical time t, can
be obtained by using Budiansky—Roth criterion [21]. The dynamic critical load can be expressed as pe=
Citer and Ocr—= Coter.

4. Numerical and discussion
Validation

According to the authors’ knowledge, there has been no publication on the nonlinear dynamic response
of the FGM plate with variable thickness. Thus, the results in this paper are compared with the constant

thickness plates (h(x) =h, =h, =const). The natural frequencies of constant thickness plate are compared

with the ones of Uymaz and Aydogdu [19] (Tab. 1). Natural frequency parameters o determined as
follows:

x 12(1-v%) p,a’h?
© % 7'E h?
C

In which: o is nature frequency of plate and calculated from Eg. (19).
The plate made of Aluminium and Zirconia with material properties are:v, =v, =v=0.3,
Em = 70.10° N/m2, pm = 2702 kg/m? and E = 151.10° N/m?, p. = 3000 kg/m?,

Table 1. Comparison of natural frequencies @  of constant thickness FGM plates

alb=1, (m, n)=(1, 1), a/h=100

Source
k=0 k=0.5 k=1 k=5 k=10 k=00
Ref [19] 1.9974 1.7972 1.7117 1.6062 1.5652 1.4317
Present 2.0 1.7987 1.7153 1.6105 1.5677 1.4349

Difference (%) 0.13 0.08 0.21 0.27 0.16 0.22
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Results in Table 1 show that, the comparison obtain a good agreement with above publication. There
for, the results of this article are reliable.

Vibration results

Consider a rectangular variable thickness FGM plate simply supported on four edges. Geometric
parameters of plate are: a=1,5m, b=0,8m, h;=0.008m, hy=0.005m, Plate made of Aluminium and Alumina
with properties of the material are: Em = 70.10° N/m?, pm = 2702 kg/m? and E. = 380.10° N/m?, p. = 3800
kg/m3, respectively. Assume that, Poisson’s ratio vim=vc= 0.3.

Natural-vibration frequency of variable plate:

Table 2. Natural frequencies (1/s) of variable thickness plate

K a=1,5m, b=0,8m, h;=0.008m, hy=0.005m
(m, n)=(1, 1) (m, n)=(1,3) (m, n)=(1, 5) (m, n)=(1, 7) (m, n)=(1, 9)
0 382.70 2835,5 7739,3 15095 24902
0.5 323.94 2402,0 6556,4 12788 21097
1 291.70 2165,4 5910,8 11529 19020
3 256.64 1907,9 5208,2 10159 16759
5 251.39 1867,7 5098,4 99443 16406

Table 2 shows natural frequencies of variable thickness plate with various modes shapes (m, n). As can
be seen, the lowest nature frequency corresponding to vibration mode of considered plate is (m, n) = (1, 1).

Nonlinear dynamic response of variable thickness plate subjected to exciting force qo=0sinQx.
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Fig. 2. Dynamic resp;nses of variable Fig. 3. Dynamic responses of variable thickness
thickness plates. plate with various k.

Figure 2 shows dynamic response of variable thickness plate subjected to mechanical load. As can be
seen that, the bound of dynamic response amplitude changes according to sine-shape law.

Figure 3 predicts effects of volume fraction index k on nonlinear vibration of variable thickness plates.
The graph shows that, amplitude of dynamic responses increase with the increasing of k. this is reasonable
because when k increase, the metal constituent in the plate increase, therefore, stiffness of the plate
decrease.



42 K.V. Phu, L.X. Doan / VNU Journal of Science: Mathematics — Physics, Vol. 35, No. 3 (2019) 30-45

Effect of geometric factors on nonlinear dynamic responses of variable thickness are illustrated in

figure 4 and figure 5.

Figure 4 shows the effect of ratio a/b on nonlinear vibration of FGM variable thickness plate. From the
graph, we can see that, dynamic responses amplitude of the plate increases when increasing the ratio a/b,

that means the stiffness of the plate decreases.

Figure 5 shows the effect of ratio ho/h, on dynamic responses of plate. As can be seen that, dynamic
response amplitude decrease when ratio ho/h; increase. That means, stiffness of plate increase when ho
increase and the stiffness of plate reaches the maximum value when ho=h; (constant thickness plate).
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Fig. 4. Effect of ratio a/b on dynamic
response of variable thickness plate.
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Fig. 6. Influnce of exciting load on dynamic
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Figure 6 indicates the effect of excited force amplitude on nonlinear vibration of plate. When amplitude
of excited force increase, the amplitudes nonlinear dynamic response of variable thickness FGM plate

increase.
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Dynamic buckling analysis results

In case plate subjected to linear compression in terms of time g=c;t and p=c,t. In which, ciand c;
are loading speed. The critical time t, can be obtained by using Budiansky—Roth criterion. The dynamic
critical force g, =cit,, = Citer (Or Py =Gyt ).

Nonlinear dynamic responses of variable thickness FGM plate are indicated in Figure 7 to Figure 11.

Nonlinear dynamic response of variable thickness FGM plate is demonstrated in figure 7. The critical
force obtained in this case is per = 19,56 Mpa. Figure 8 illustrates influence of volume fraction index k on
dynamic responses of variable thickness plate. From the graph we can see that the critical forces decrease
with the increasing of volume fraction index k. For k=1, k=2 and k=3, critical forces are pe = 19,56 Mpa,
Per = 16,32 Mpa and per = 15,28 Mpa, respectively.
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of variable thickness plate.

Effect of ratio a/b on dynamic responses of variable thickness plate is shown in Figure 9. As can be
seen that, if the ratio a/b increases, the critical load will decrease. For a/b=1,5; a/b=2 and a/b=3, critical
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forces are per @b=15 = 20,57 Mpa, Per @b=2) = 19,32 Mpa and per @n=3) = 18,43Mpa, respectively. On other
words, the load-bearing capacity of the plate will decrease when the plate’s length increase.

Figure 10 illustrates the influence of ratio ho/h; on dynamic responses of variable thickness plate.
Results show that, ratio ho/h; increases, the critical forces also increase. (per = 16,92 Mpa in case ho/h;=0,5
and per = 27,62 Mpa in case ho/h;=1). That means, when ratio ho/h; increases, the plate will work more
stability.

Figure 11 shows the effect of buckling mode shapes on dynamic responses of variable thickness FGM
plate subjected to mechanical load. Clearly, the smallest critical dynamic buckling load corresponds to the
buckling mode shape (m, n)=(1, 1).

5. Conclusions

This paper established the governing equations of variable thickness FGM plate according to the
classical plate theory and the geometrical nonlinearity in von Karman-Donnell sense. The basics of
vibration and dynamic stability problems of a variable thickness FGM plate have been investigated by
using Galerkin method, Runger-Kutta method and Budiansky-Roth criterion.

Some conclusions can be drawn:

i) The lowest nature frequency corresponding to vibration mode of variable thickness FGM plate is (m,
n) =(1,1).

ii) The vibration amplitude of variable thickness FGM plate increases and critical load of the plate
decreases with the rise of ratio a/b. That mean, the length of the plate increases reducing the stability of the
plate.

iii) The dynamic critical load of plate increases and vibration amplitude of plate decreases when ratio
ho/hy increasing. On other words, the stability of the plate increases with increasing plate thickness.

Acknowledgements

This research is funded by National Foundation for Science and Technology Development of Vietnam
(NAFOSTED) under Grant number 107.02-2018.324.

References

[1] V. Ungbhakorn, N. Wattanasakulpong, Thermo-elastic Vibration Analysis of Third-order Shear Deformable
Functionally Graded Plates with Distributed Patch Mass Under Thermal Environment, J. Appl. Acoust. 74 (2013)
1045-1059. http://doi.org/10.1016/j.apacoust.2013.03.010.

[2] M. Talha, B.N. Singh, Static Response and Free Vibration Analysis of FGM Plates Using Higher Order Shear
Deformation Theory, Appl. Math. Model. 34 (2010) 3991-4011. http://doi.org/10.1016/j.apm.2010.03.034.

[3] N.D. Duc, P.H. Cong, Nonlinear Postbuckling of Symmetric S-FGM Plates Resting on Elastic Foundations Using
Higher Order Shear Deformation Plate Theory in Thermal Environments, Compos. Struct. 100 (2013) 566-574.
https://doi.org/10.1016/j.compstruct.2013.01.006.

[4] N.D. Duc, H.V. Tung, Mechanical and Thermal Postbuckling of Higher Order Shear Deformable Functionally
Graded Plates on Elastic Foundations, Compos. Struct. 93 (2011) 2874-2881.

https://doi.org/10.1016/j.compstruct.2011.05.017.

[5] Dao Huy Bich, Vu Hoai Nam, Nguyen Thi Phuong, Nonlinear postbuckling of eccentrically stiffened
functionally graded plates and shallow shells. Vietnam J Mech. 33 (3) (2011) 132-47.


http://doi.org/10.1016/j.apacoust.2013.03.010
http://doi.org/10.1016/j.apm.2010.03.034
https://doi.org/10.1016/j.compstruct.2013.01.006
https://doi.org/10.1016/j.compstruct.2013.01.006
https://doi.org/10.1016/j.compstruct.2011.05.017

(6]

[7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]
[20]
[21]

[22]

K.V. Phu, L.X. Doan / VNU Journal of Science: Mathematics — Physics, Vol. 35, No. 3 (2019) 30-45 45

https://doi.org/10.15625/0866-7136/33/3/207

H. Hebali, A. Tounsi, M.S. A. Houari, A. Bessaim, E.A.A. Bedia, New Quasi-3D Hyperbolic Shear Deformation
Theory for the Static and Free Vibration Analysis of Functionally Graded Plates, Journal of Engineering
Mechanics 140 (2014) 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665.

A. Mahi, E.A.A. Bedia, A. Tounsi, A new hyperbolic shear deformation theory for bending and free vibration
analysis of isotropic, functionally graded, sandwich and laminated composite plates, Applied Mathematical
Modelling 39(9) (2015) 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045.

R. Benferhat, T.H. Daouadji, M.S. Mansour, L. Hadji, Free vibration analysis of FG plates resting on an elastic
foundation and based on the neutral surface concept using higher-order shear deformation theory, Comptes
Rendus Mécanique 344(9) (2016) 631-641. https://doi.org/10.12989/eas.2016.10.5.1033.

R. Kandasamy, R. Dimitri, F. Tornabene, Numerical study on the free vibration and thermal buckling behavior
of moderately thick functionally graded structures in thermal environments, Composite Structures, 157 (2016) 207-221.
https://doi.org/10.1016/j.compstruct.2016.08.037.

E. Efraim, M. Eisenberger, Exact vibration analysis of variable thickness thick annular isotropic and FGM plates.
Journal of Sound and Vibration 299 (2007) 720-738. https://doi.org/10.1016/j.jsv.2006.06.068.

S.H. Hosseini-Hashemi, H.R.D. Taher, H. Akhavan, Vibration analysis of radially FGM sectorial plates of
variable thickness on elastic foundations, Composite Structures 92 (2010) 1734-1743.
https://doi.org/10.1016/j.compstruct.2009.12.016.

M. Shariyat, M.M. Alipou, A power series solution for vibration and complex modal stress analyses of variable
thickness viscoelastic two-directional FGM circular plates on elastic foundations, Applied Mathematical
Modelling 37 (2013) 3063-3076. https://doi.org/10.1016/j.apm.2012.07.037.

V. Tajeddini, A. Ohadi, M. Sadighi, Three-dimensional free vibration of variable thickness thick circular and
annular isotropic and functionally graded plates on Pasternak foundation, Int J of Mech Sci. 53 (2011) 300-308.
https://doi.org/10.1016/j.ijmecsci.2011.01.011.

F. Tornabene, N. Fantuzzi, M. Bacciocchi, E. Viola, J.N. Reddy, A Numerical Investigation on the Natural
Frequencies of FGM Sandwich Shells with Variable Thickness by the Local Generalized Differential Quadrature
Method, Applied Sciences 7 (2) (2017) 131. https://doi.org/10.3390/app7020131.

A.H. Sofiyev, The buckling of an orthotropic composite truncated conical shell with continuously varying
thickness subject to a time dependent external pressure, Composites: Part B. 34 (2003) 227-233.
https://doi.org/10.1016/S1359-8368(02)00105-1.

R.A. Akbari, S.A. Ahmadi, Buckling Analysis of Functionally Graded Thick Cylindrical Shells with Variable
Thickness Using DQM, Arabian Journal for Science and Engineering 39 (11) (2014) 8121-8133.
https://doi.org/10.1007/s13369-014-1356-4.

P.T. Thang, N.D. Duc, N.T. Trung, Effects of variable thickness and imperfection on nonlinear buckling of
sigmoid-functionally graded cylindrical panels, Composite Structures 155 (2016) 99-106.
https://doi.org/10.1016/j.compstruct.2016.08.007.

P.T. Thang, N.T. Trung, J. Lee, Closed-form expression for nonlinear analysis of imperfect sigmoid-FGM plates
with variable thickness resting on elastic medium, Composite Structures 143 (2016)143-150.
https://doi.org/10.1016/j.compstruct.2016.02.002.

D.O. Brush, Almroth, Buckling of Bars, Plates and Shells, New York, Mc Graw-Hill, Inc., 1975.

A.S. Volmir, Nonlinear Dynamics of Plates and Shells, Science Edition, Moscow, 1972.

B. Budiansky, R.S. Roth, Axisymmetric dynamic buckling of clamped shallow spherical shells, NASA Technical
Note D. 510 (1962) 597-609.

B. Uymaz, M. Aydogdu, Three-Dimensional Vibration Analyses of Functionally Graded Plates under Various
Boundary Conditions. Journal of Reinforced Plastics and Composites 26(18) (2007) 1847-1863.
https://doi.org/10.1177/0731684407081351 22.


https://doi.org/10.15625/0866-7136/33/3/207
https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
https://doi.org/10.1016/j.apm.2014.10.045
https://doi.org/10.12989/eas.2016.10.5.1033
https://doi.org/10.1016/j.compstruct.2016.08.037
https://doi.org/10.1016/j.jsv.2006.06.068
https://doi.org/10.1016/j.compstruct.2009.12.016
https://doi.org/10.1016/j.apm.2012.07.037
https://doi.org/10.1016/j.ijmecsci.2011.01.011
https://doi.org/10.3390/app7020131
https://doi.org/10.1016/S1359-8368(02)00105-1
https://doi.org/10.1007/s13369-014-1356-4
https://doi.org/10.1016/j.compstruct.2016.08.007
https://doi.org/10.1016/j.compstruct.2016.02.002
https://doi.org/10.1177/0731684407081351

