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Abstract: This paper establishes the governing equations of rectangular plates of variable 

thickness subjected to mechanical load by using the classical plate theory, the geometrical 

nonlinearity in von Karman-Donnell sense. Solutions to the problem are derived according to 

Galerkin method. Nonlinear dynamic responses, critical dynamic loads are obtained by using 

Runge-Kutta method and the Budiansky–Roth criterion. The effect of volume-fraction index k and 

some geometric factors are considered and numerical results are presented. 
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1. Introduction 

Rectangular FGM plates are used extensively in spacecraft, nuclear reactors or defense industry and in 

civil engineering, v.v. Today, analysis of vibration and dynamic stability of FGM plate structures has been 

studied by many authors.  

Firstly, for dynamic problems of constant thickness plate structures, Ungbhakorn et al. [1] investigated 

thermo-elastic vibration of  FGM plates with distributed patch mass based on the third-order shear 

deformation theory and Energy method. Talha et al. [2] analyzed free vibration of FGM plates by using 

HSDT and finite element method. Duc et al. used the Galerkin method and  the higher-order shear 

deformable plate theory to study the post-buckling of thick symmetric functionally graded plates resting on 
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elastic foundations under thermomechanical loads [3]  and buckling and post-buckling of thick functionally 

graded plates subjected to in-plane compressive [4]. Bich et al. [5] examined nonlinear post-buckling of 

eccentrically stiffened functionally graded plates and shallow shells based on the classical shell theory and 

the smeared stiffeners technique. Hebali et al. [6] and Mahi et al. [7] studied static and free-vibration of 

FGM plates under mechanical load based on hyperbolic shear deformation theory. Benferhat et al. [8] used 

Hamilton’s principle and higher-order shear deformation theory to study vibration of FG plates resting on 

elastic foundation. R. Kandasamy et al. [9] used FSDT and finite element method to investigate free 

vibration and thermal buckling behavior of moderately thick FGM plates in thermal environments. 

Secondly, for dynamic problems of variable thickness plate structures, E. Efraim et al. [10] based on 

the FSDT to study vibration of variable thickness thick annular isotropic and FGM plates. S. H. Hosseini-

Hashemi et al. [11] based on the classical plate theory and differential quadrature method (DQM) to deal 

with free vibration problem of radially FG circular and annular sectorial thin plates with variable thickness 

resting on elastic foundations. M. Shariyat  and M. M. Alipou [12] studied vibration of variable thickness 

two-directional FGM circular plates resting on elastic foundations by using power series. V. Tajeddini et al. 

[13] employed linear elastic theory and Ritz method to investigate 3D free vibration of thick circular FG 

plates with variable thickness. F. Tornabene et al. [14] examined natural frequencies of FGM sandwich 

shells with variable thickness by using HSDT and local generalized differential quadrature method. A. H. 

Sofiyev [15] used Ritz method to study buckling of continuously varying thickness orthotropic composite 

truncated conical shell under mechanical load.  A. R. Akbari and S. A. Ahmadi [16] analyzed buckling of a 

FG thick cylinder shells with variable thickness under mechanical load by using DQM. P. T. Thang et al. 

[17] investigated effects of variable thickness and imperfection on nonlinear buckling of S-FGM 

cylindrical panels subjected to mechanical load based on the classical shell theory and using Galerkin 

method. These authors also investigated effect of variable thickness on buckling and post-buckling 

behavior of S-FGM plates resting on elastic medium [18].  

In conclusion, according to the above review reveals and author's knowledge, there were many studies 

on FGM plate and shell structures but has no publication on nonlinear vibration and dynamic stability of 

FGM rectangular plate with variable thickness under mechanical load. In this paper, we investigate 

nonlinear vibration and dynamic stability of rectangular plates with variable thickness subjected to 

mechanical load. The governing equations are established based on the classical plate theory. Nonlinear 

dynamic responses are obtained by using Galerkin method and Runge-Kutta method. Critical dynamic 

loads are obtained by using the Budiansky–Roth criterion. 

2. Governing equations 

 

Fig. 1. Configuration of variable thickness FGM plate. 
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Consider a rectangular FGM plate with variable thickness subjected to mechanical load. The thickness 

of the plate can be expressed as: h=h(x,y) (Fig. 1a).  

Assume that, plate made of FGM with the volume fraction of ceramic  cV z changes according to the 

following rule: 
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With the above rule, the Young’s modulus E, Poisson ratio ν of FGM plate can be expressed as: 
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According to [19], the strains at a distance z from the middle surface can be expressed as: 

 0
ij ij ijzk    with (i j= xx, yy, xy) 

or  0 0 0, , ,xx xx xx y yx yy xy xy xyzk zk zk            (3) 

Where: 0 0 0; ;xx yy xy   , are the strains at the middle surface and ;
xx yy

k k  are curvatures and xyk is the 

twist. They are related to the displacement components , ,u v w in the , ,x y z  coordinate directions as: 
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Hooke's law applied to FGM plate under mechanical loads can be expressed as follows 
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Integrating the stress-strain equations through the thickness of the plate we obtain the mechanical 

behavior equations of FGM plate with variable thickness: 
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In which:  
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The mechanical behavior equations of FGM plate with variable thickness can be rewritten as follows 
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where: 
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Internal force and moment resultants in Eq (8) can be expressed as: 

   

   

0 0
11 11

0 0
11 11

0
66 66

. .

. .

. .

xx xx yy xx yy

yy yy xx yy xx

xy xy xy

N A B k k

N A B k k

N A B k

   

   











   

   

 

 (9) 

   

   

0 0
11 11

0 0
11 11

0
66 66

. .

. .

. .

xx xx yy xx yy

yy yy xx yy xx

xy xy xy

M B D k k

M B D k k

M B D k

   

   











   

   

 

 (10) 

Based on the classical plate theory, the motion equations of   variable thickness FGM plate can be 

given as: 
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here:  
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Substituting Eq. (9) and Eq. (10)  in to Eq. (11) and consider Eq. (4) then, Eq. (11) can be rewritten as: 
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where: 
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Eqs. (12) are the basic equations used to investigate the nonlinear dynamic response of variable 

thickness FGM plates subjected to mechanical load.   

For simplicity, we only consider the simply supported rectangular FGM plate with variable thickness 

which linearly changes in the x-axis (Fig. 1b). Assume that, the thickness of the plate can be determined as 

follows: 
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Where: a is the length of the plate’s edge, h1 and h0 are the thickness of FGM plate at x=0 and x=a, 
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Eqs. (14) are basic equations used to investigate nonlinear dynamic responses of FGM plates with 

thickness linearly changes in the x-axis subjected to mechanical load.  
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3. Solution method  

Consider a variable thickness FGM rectangular plate subjected to uniformly distributed pressures p(t) 

and q(t) in x and y direction. The exciting force q0(t) acting on the plate’s surface. 

The plate is simply supported on 4 edges, then the boundary conditions are: 

0, 0; ( )xx xxw M N ph x    at x =0 and x=a. 

0, 0; ( )y yyw M N qh x     at y =0 and y=b. 

Satisfying boundary conditions, the deflection of the plate can be chosen as: 
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Where: m, n are the numbers of half-wave along the x and y direction, respectively. 

Substituting Eq. (15) into Eq. (14) then applying Galerkin procedure, at the same time, ignoring inertial 

components along x and y axes (because of u<<w, v<<w) [20], we obtain: 
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The first two equations of Eq. (16) are two linear algebraic equations for the amplitudes Umn and Vmn. 

Solving Umn and Vmn in terms of Wmn then substituting into the third equation of Eq. (16), we obtain: 

 
2

* * 2 3 0
1 1 1 2 32 2

4w dw
2 W W W

abqd
a a a

dtdt mn
 


      (17) 

In which:  
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Vibration analysis  

Suppose that the plate is subjected to uniform compression loads q(t) and p(t) on each edge and the 

exciting force in form q0=QsinΩt, Eq.(17) can be rewritten as follows 
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2

* * 2 3
1 1 1 2 32 2

w dw 4 sin
2 W W W

d abQ t
a a a

dtdt mn
 




      (18) 

* Natural-vibration frequency of plate: the natural frequency of the variable thickness FGM plate can 

be defined as. 

 
*

0 1 1/a   (19) 

* Nonlinear response of variable thickness FGM plate:  

Nonlinear responses of variable thickness FGM plates are received from Eq. (17) by using Runger-

Kutta method. 

Dynamic stability analysis 

For dynamic stability analysis, this paper studies a rectangular plate with variable thickness subjected 

to linear compression in terms of time p(t)= -c1t and q(t)= -c2t. In which, c1 and c2 are loading speed. 

Dynamic responses of plate can be determined by solving equation (17). The dynamic critical time tcr can 

be obtained by using Budiansky–Roth criterion [21]. The dynamic critical load can be expressed as pcr= 

c1tcr and qcr= c2tcr.  

4. Numerical and discussion 

Validation 

According to the authors’ knowledge, there has been no publication on the nonlinear dynamic response 

of the FGM plate with variable thickness. Thus, the results in this paper are compared with the constant 

thickness plates (   1oh x h h const   ). The natural frequencies of constant thickness plate are compared 

with the ones of Uymaz and Aydogdu [19] (Tab. 1). Natural frequency parameters *  determined as 

follows: 

2 2 2
*

0 4 2

12(1 )
. c

c

a b

E h

 
 




  

In which: ω0 is nature frequency of plate and calculated from Eq. (19). 

The plate made of Aluminium and Zirconia with material properties are: 0.3c m     , 

 Em = 70.109 N/m2, ρm = 2702 kg/m3 and Ec = 151.109 N/m2, ρc = 3000 kg/m3.  

Table 1. Comparison of natural frequencies 
*  of constant thickness FGM plates 

Source 
a/b=1, (m, n)=(1, 1), a/h=100 

k=0 k=0.5 k=1 k=5 k=10 k=∞ 

Ref [19] 1.9974 1.7972 1.7117 1.6062 1.5652 1.4317 

Present 2.0 1.7987 1.7153 1.6105 1.5677 1.4349 

Difference (%) 0.13 0.08 0.21 0.27 0.16 0.22 
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Results in Table 1 show that, the comparison obtain a good agreement with above publication. There 

for, the results of this article are reliable. 

Vibration results 

Consider a rectangular variable thickness FGM plate simply supported on four edges. Geometric 

parameters of plate are: a=1,5m, b=0,8m, h1=0.008m, h0=0.005m, Plate made of Aluminium and Alumina 

with properties of the material are: Em = 70.109 N/m2, ρm = 2702 kg/m3 and Ec = 380.109 N/m2, ρc = 3800 

kg/m3, respectively. Assume that, Poisson’s ratio νm=νc= 0.3. 

Natural-vibration frequency of variable plate: 

Table 2. Natural frequencies (1/s) of variable thickness plate  

k 
a=1,5m, b=0,8m, h1=0.008m, h0=0.005m 

(m, n)=(1, 1) (m, n)= (1, 3) (m, n)=(1, 5) (m, n)=(1, 7) (m, n)=(1, 9) 

0 382.70 2835,5 7739,3 15095 24902 

0.5 323.94 2402,0 6556,4 12788 21097 

1 291.70 2165,4 5910,8 11529 19020 

3 256.64 1907,9 5208,2 10159 16759 

5 251.39 1867,7 5098,4 99443 16406 

Table 2 shows natural frequencies of variable thickness plate with various modes shapes (m, n). As can 

be seen, the lowest nature frequency corresponding to vibration mode of considered plate is (m, n) = (1, 1). 

Nonlinear dynamic response of variable thickness plate subjected to exciting force q0=QsinΩt. 

 

Figure 2 shows dynamic response of variable thickness plate subjected to mechanical load. As can be 

seen that, the bound of dynamic response amplitude changes according to sine-shape law. 

Figure 3 predicts effects of volume fraction index k on nonlinear vibration of variable thickness plates. 

The graph shows that, amplitude of dynamic responses increase with the increasing of k. this is reasonable 

because when k increase, the metal constituent in the plate increase, therefore, stiffness of the plate 

decrease. 

Fig. 2. Dynamic responses of variable 

thickness plates. 

Fig. 3. Dynamic responses of variable thickness 

plate with various k. 

a=1,5m; b=0,8m, h1=0.008m, h0=0.005m, 

k=1, (m, n) = (1, 1), q0=400sin800t 

a=1,5m; b=0,8m, h1=0.008m, h0=0.005m,  

(m, n) = (1, 1), q0=300sin800t 
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Effect of geometric factors on nonlinear dynamic responses of variable thickness are illustrated in 

figure 4 and figure 5.  

Figure 4 shows the effect of ratio a/b on nonlinear vibration of FGM variable thickness plate. From the 

graph, we can see that, dynamic responses amplitude of the plate increases when increasing the ratio a/b, 

that means the stiffness of the plate decreases. 

Figure 5 shows the effect of ratio h0/h1 on dynamic responses of plate. As can be seen that, dynamic 

response amplitude decrease when ratio h0/h1 increase. That means, stiffness of plate increase when h0 

increase and the stiffness of plate reaches the maximum value when h0=h1 (constant thickness plate). 

 

Figure 6 indicates the effect of excited force amplitude on nonlinear vibration of plate. When amplitude 

of excited force increase, the amplitudes nonlinear dynamic response of variable thickness FGM plate 

increase. 

Fig 7. Dynamic response of variable thickness plate. 

a=1,5m, b=0,8m, 

h1=0.008m, h0=0.005m, 

k=1, (m, n) = (1, 1), 

q0=0, c1=c2=1e8 

Fig. 6. Influnce of exciting load on dynamic 

response of plate. 

a=1,5m; b=0,8m, h1=0.008m, h0=0.005m, 

k=1, (m, n) = (1, 1) 

Fig. 5. Effect of ratio h0/h1 on dynamic 

response of variable thickness plate. 

a=1,5m; b=0,8m, h1=0.008m, k=1,  

(m, n) = (1, 1), q0=400sin800t 

Fig. 4. Effect of ratio a/b on dynamic 

response of variable thickness plate. 

b=0,8m, h1=0.008m, h0=0.005m, k=1, 

(m, n) = (1, 1), q0=400sin800t 
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Dynamic buckling analysis results 

In case plate subjected to linear compression in terms of time 1q c t  and 2p c t . In which, c1 and c2 

are loading speed. The critical time tcr can be obtained by using Budiansky–Roth criterion. The dynamic 

critical force 1cr crq c t  = c1.tcr (or 2cr crp c t ).  

Nonlinear dynamic responses of variable thickness FGM plate are indicated in Figure 7 to Figure 11. 

Nonlinear dynamic response of variable thickness FGM plate is demonstrated in figure 7. The critical 

force obtained in this case is pcr = 19,56 Mpa. Figure 8 illustrates influence of volume fraction index k on 

dynamic responses of variable thickness plate. From the graph we can see that the critical forces decrease 

with the increasing of volume fraction index k. For k=1, k=2 and k=3, critical forces are pcr = 19,56 Mpa, 

pcr = 16,32 Mpa and pcr = 15,28 Mpa, respectively. 

 
 

 

Effect of ratio a/b on dynamic responses of variable thickness plate is shown in Figure 9. As can be 

seen that, if the ratio a/b increases, the critical load will decrease. For a/b=1,5; a/b=2 and a/b=3, critical 

Fig 8. Effect of k on dynamic response of 

variable thickness plates. 

a=1,5m, b=0,8m, 

h1=0.008m, h0=0.005m, 

(m, n) = (1, 1), 

q0=0, c1=c2=1e8 

 

Fig 9. Effect of ratio a/b on dynamic 

response of variable thickness plate. 

b= 0,8m, h1=0.008m,  h0=0.005m, 

k=1, (m, n) = (1, 1), 

q0=0, c1=c2=1e8 

 

Fig 10. Effect of ratio h0/h1 on dynamic response 

of variable thickness plate. 

Fig 11. Effect of buckling mode shapes on 

dynamic responses of variable thickness plate. 

a=1,5m; b=0,8m; h1=0.008m; 

k=1, (m, n) = (1, 1), q0=0, 

c1=c2=1e8 

 

a=1,5m; b=0,8m; h1=0.008m; k=1; 

h0=0,005m; k=1, q0=0, c1=c2=1e8 
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forces are pcr (a/b=1,5) = 20,57 Mpa, pcr (a/b=2) = 19,32 Mpa and pcr (a/b=3) = 18,43Mpa, respectively. On other 

words, the load-bearing capacity of the plate will decrease when the plate’s length increase.  

Figure 10 illustrates the influence of ratio h0/h1 on dynamic responses of variable thickness plate. 

Results show that, ratio h0/h1 increases, the critical forces also increase. (pcr = 16,92 Mpa in case h0/h1=0,5 

and pcr = 27,62 Mpa in case h0/h1=1). That means, when ratio h0/h1 increases, the plate will work more 

stability. 

Figure 11 shows the effect of buckling mode shapes on dynamic responses of variable thickness FGM 

plate subjected to mechanical load. Clearly, the smallest critical dynamic buckling load corresponds to the 

buckling mode shape (m, n)=(1, 1). 

5. Conclusions 

This paper established the governing equations of variable thickness FGM plate according to the 

classical plate theory and the geometrical nonlinearity in von Karman-Donnell sense. The basics of 

vibration and dynamic stability problems of a variable thickness FGM plate have been investigated by 

using Galerkin method, Runger-Kutta method and Budiansky-Roth criterion. 

Some conclusions can be drawn: 

i) The lowest nature frequency corresponding to vibration mode of variable thickness FGM plate is (m, 

n) =(1,1). 

ii) The vibration amplitude of variable thickness FGM plate increases and critical load of the plate 

decreases with the rise of ratio a/b. That mean, the length of the plate increases reducing the stability of the 

plate. 

iii)  The dynamic critical load of  plate increases and vibration amplitude of plate decreases when ratio 

ho/h1 increasing. On other words, the stability of the plate increases with increasing plate thickness.   
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