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Abstract: This study develops unconditionally monotone finite-difference scheme of second-order 

of local approximation on uniform grids for the initial boundary problem value for the Gamma 

equation through the establishment of two-side estimates for the scheme’s solution. The study 

considers the initial boundary value problem for the so called Gamma equation, which can be 

derived by transforming the nonlinear Black-Scholes equation for option price into a quasilinear 

parabolic equation for the second derivative of the option price. By means of regularization 

principle, the previous study results were generalized for construction of unconditionally monotone 

finite-difference scheme (the maximum principle was satisfied without constraints on relations 

between the coefficients and grid parameters) of second order of approximation on uniform grids for 

this equation. With the help of difference maximum principle, the two-side estimates for difference 

solution were obtained at the arbitrary non-sign-constant input data of the problem. A priori estimate in 

the maximum norm C was proved. Interestingly, the proven two-side estimates for difference solution 

were fully consistent with differential problem, and the maximal and minimal values of the difference 

solution did not depend on the diffusion and convection coefficients. Finally, relevant computational 

experiments were given to confirm the above-named theoretical findings. 

Keywords: Gamma equation, maximum principle, two-side estimates, monotone finite-difference 

scheme, quasi-linear parabolic equation, scientific computing. 

1. Introduction 

Over the last decades, not only financial engineers but also mathematicians have paid special 

attention to the valuation of derivative financial instruments. Indeed, since being introduced by Fischer 
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Black and Myron Scholes in 1973, the Black-Scholes model based on partial differential equation has 

been widely employed in modern mathematical finance and become a common-sense approach for 

pricing options as well as many other financial securities [1]. This mathematical model was derived 

from the principle that yielding profits from making portfolios of both short and long positions in options 

as well as their underlying stocks should not be possible, if option prices are rightly priced in the market 

[2]. These scholars indicated that a European option’s value on a stock, whose price or the log return of 

underlying price is supposed to follow a geometric Brownian motion with constant volatility and drift, 

is determined by a second-order parabolic equation concerning time and stock price. Nevertheless, the 

assumptions of Black-Scholes equation based on perfectly liquid market are so idealistic in comparison 

with the high illiquidity recently. 

A variety of numerical methods were used in previous papers for studying properties of typical non-

linear Black-Scholes equations, see, for instance [3-5] and references there in. 

Not only in mathematical physics, but also in economics, there is a need to solve partial differential 

equations containing lower derivatives. For example, in financial mathematics, it is of interest to study 

the Gamma equation obtained by transforming the nonlinear Black-Scholes equation into a quasilinear 

parabolic equation [6, 7]. The approximate solution of the Gamma equation is the main goal of this 

study. 

In the theory of difference schemes [8], the maximum principle is of great interest. In particular, it 

is used to study the stability and convergence of a difference solution on a uniform norm. Computational 

methods that satisfy the maximum principle are called monotone. Monotone schemes play an important 

role in computational practice, since the corresponding discrete problems are well-posed [9]. Moreover 

they provide numerical solution without oscillations even in the case of non-smooth solutions [10]. 

It is non-less important that one can obtain lower estimates of the solutions to differential – 

difference problems, or in the general case, two-sided estimates for the solution of the problems. This is 

especially important for investigation of theoretical properties of the computational methods 

approximating problems with unbounded nonlinearities, where it is necessary to prove that discrete 

solution belongs to a neighbourhood of the exact solution. As an example we investigate the Gamma 

equation modelling pricing of options in financial mathematics. In this context, it is interesting to note 

the paper [11], in which two-sided estimates for solution of difference schemes approximating Dirichlet 

problem for linear parabolic equation are obtained in the discrete and continuous cases. 

In the present paper, the Gamma equation is considered, on the basis of the technique from [12], 

two-sided estimates are obtained for its exact solution. The obtained results are generalized to the 

construction of unconditionally monotone finite-difference schemes of second-order of local 

approximation on uniform grids for a given equation. The construction of such schemes is based on the 

appropriate choice of the perturbed coefficient, similarly to [8]. Using the difference maximum 

principle, two-sided and a priori estimates are obtained in the C-norm for the difference solution. It is 

interesting to note that the proved two-sided estimates of the difference solution are completely 

consistent with the estimates of exact solution of differential problem. 

2. Auxiliary results 

Assume that Ωℎ is a finite set of nodes (grid) in some bounded domain of the 𝑛-dimensional 

Euclidean space, and 𝑥 ∈ Ωℎ is a point of the grid Ωℎ. Consider the equation  

 𝐴(𝑥)𝑦(𝑥) = ∑𝜉∈ℳ′(𝑥) 𝐵(𝑥, 𝜉)𝑦(𝜉) + 𝐹(𝑥),    𝑥 ∈ Ωℎ , (1) 
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which is called the canonical form of the finite-difference scheme [8, p. 226]. Here ℳ′(𝑥) = ℳ(𝑥)\𝑥, 

and ℳ(𝑥) is the grid stencil. Since any finite-difference scheme can be written as (1), monotonicity is 

understood as the following conditions saying that the coefficients of Eq. (1) are positive  

 𝐴(𝑥) > 0,    𝐵(𝑥, 𝜉) > 0     𝑓𝑜𝑟  𝑎𝑙𝑙     𝜉 ∈ ℳ′(𝑥), (2) 

 𝐷(𝑥) = 𝐴(𝑥) − ∑𝜉∈ℳ′(𝑥) 𝐵(𝑥, 𝜉) > 0     𝑓𝑜𝑟  𝑎𝑙𝑙     𝜉 ∈ ℳ′(𝑥). (3) 

To obtain a two-sided estimate of the solution of a finite-difference scheme, it is most convenient to 

use the following lemma.  

Lemma 1 ([13, 14]) Assume that conditions (2)–(3) that the coefficients are positive are satisfied. 

Then the maximum and minimum values of the solution of the finite-difference scheme (1) belong to the 

range of the input data  

 min
𝑥∈Ωℎ

𝐹(𝑥)

𝐷(𝑥)
⩽ 𝑦(𝑥) ⩽ max

𝑥∈Ωℎ

𝐹(𝑥)

𝐷(𝑥)
,    𝑥 ∈ Ωℎ . (4) 

Corollary 1 ([8, p. 231]) Assume that conditions of the lemma are satisfied. Then in the grid analog 

of the 𝐶-norm, the solution of finite-difference problem (1) satisfies the estimate  

 ‖𝑦‖𝐶 = max
𝑥∈Ωℎ

|𝑦(𝑥)| ⩽ ‖
𝐹

𝐷
‖

𝐶
. (5) 

3. Statement of the problem and two-sided estimate of the exact solution 

In a rectangle �̅�𝑇 = {(𝑥, 𝑡): 𝑙1 ⩽ 𝑥 ⩽ 𝑙2, 0 ⩽ 𝑡 ⩽ 𝑇} we consider the following initial boundary 

value problem for a quasilinear parabolic equation, which is called the Gamma equation [7]  

 
𝜕𝑢

𝜕𝑡
=

𝜕2𝛽(𝑢)

𝜕𝑥2 +
𝜕𝛽(𝑢)

𝜕𝑥
+ 𝑐

𝜕𝑢

𝜕𝑥
,    𝑢 = 𝑢(𝑥, 𝑡),    𝑐 = 𝑐𝑜𝑛𝑠𝑡, (6) 

with homogeneous boundary conditions  

 𝑢(𝑙1, 𝑡) = 𝑢(𝑙2, 𝑡) = 0,    𝑡 > 0, (7) 

and initial conditions  

 𝑢(𝑥, 0) = 𝑢0(𝑥), 𝑙1 ⩽ 𝑥 ⩽ 𝑙2. (8) 

 Equation (6) can be written as  

 
𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝑥
(𝑘(𝑢)

𝜕𝑢

𝜕𝑥
) + 𝑟(𝑢)

𝜕𝑢

𝜕𝑥
, (9) 

with coefficients  

 𝑘(𝑢) = 𝛽′(𝑢),    𝑟(𝑢) = 𝑘(𝑢) + 𝑐. (10) 

 We assume that parabolicity condition of equation (9) on the solution [15] is satisfied  

 0 < 𝑘1 ⩽ 𝑘(𝑢) ⩽ 𝑘2,    ∀𝑢 ∈ �̅�𝑢,    𝑘1, 𝑘2 = 𝑐𝑜𝑛𝑠𝑡, (11) 

where  

 �̅�𝑢 = {𝑢(𝑥, 𝑡):    𝑚1 ⩽ 𝑢(𝑥, 𝑡) ⩽ 𝑚2,    (𝑥, 𝑡) ∈ �̅�𝑇}. 

We assume in what follows that there exists a unique solution of problem (6)–(8) and all coefficients 

in Eq. (9) and the desired function have continuous bounded derivatives of order that is required as the 

presentation proceeds. 

Using the technique from [12], we prove two-sided estimates for the exact solution of problem 

(6)–(8). 
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Theorem 1. Let condition (11) be satisfied. Then for solution 𝑢(𝑥, 𝑡) of problem (6)–(8) the 

following two-sided estimates are true:  

 𝑚1 = min {0, min
𝑙1⩽𝑥⩽𝑙2

𝑢0(𝑥)} ⩽ 𝑢(𝑥, 𝑡) ⩽ max {0, max
𝑙1⩽𝑥⩽𝑙2

𝑢0(𝑥)} = 𝑚2. (12) 

 Proof. To prove (12), we make the transformation of the function 𝑢(𝑥, 𝑡) to the new function 𝑣(𝑥, 𝑡) 

associated with it by the equality  

 𝑢(𝑥, 𝑡) = 𝑣(𝑥, 𝑡)𝑒𝜆𝑡, 

where 𝜆 is an arbitrary number. The function 𝑣(𝑥, 𝑡) satisfies the equation  

 
𝜕𝑣

𝜕𝑡
+ 𝜆𝑣 − 𝑘(𝑣𝑒𝜆𝑡)

𝜕2𝑣

𝜕𝑥2 −
𝜕𝑘(𝑣𝑒𝜆𝑡)

𝜕𝑥

𝜕𝑣

𝜕𝑥
− 𝑟(𝑣𝑒𝜆𝑡)

𝜕𝑣

𝜕𝑥
= 0, (13) 

with initial and boundary conditions  

 𝑣(𝑥, 0) = 𝑢0(𝑥),    𝑙1 ⩽ 𝑥 ⩽ 𝑙2, (14) 

 𝑣(𝑙1, 𝑡) = 𝑣(𝑙2, 𝑡) = 0,    𝑡 > 0. (15) 

 Let the maximum of the solution 𝑣(𝑥, 𝑡) of problem (13)–(15) be reached at some point (𝑥0, 𝑡0) ∈
(𝑙1, 𝑙2) × (0, 𝑇]  

 max
(𝑥,𝑡)∈�̅�𝑇

𝑣(𝑥, 𝑡) = 𝑣(𝑥0, 𝑡0), 

moreover, at the point (𝑥0, 𝑡0) equation (13) and the following relations are satisfied  

 
𝜕𝑣(𝑥0,𝑡0)

𝜕𝑡
⩾ 0,    

𝜕𝑣(𝑥0,𝑡0)

𝜕𝑥
= 0, 

 
𝜕2𝑣(𝑥0,𝑡0)

𝜕𝑥2 = lim
Δ𝑥→0

𝑣(𝑥0−Δ𝑥,𝑡0)−2𝑣(𝑥0,𝑡0)+𝑣(𝑥0+Δ𝑥,𝑡0)

Δ𝑥2 ⩽ 0. 

It follows that  

 𝑣(𝑥, 𝑡) ⩽ 𝑣(𝑥0, 𝑡0) ⩽ 0,    𝜆 > 0. (16) 

If the maximal in �̅�𝑇 value 𝑣(𝑥, 𝑡) is taken at the boundary {𝑙1, 𝑙2} × (0, 𝑇] ∪ [𝑙1, 𝑙2] × {0}, then we 

get  

 𝑣(𝑥, 𝑡) ⩽ max
(𝑥,𝑡)∈�̅�𝑇

𝑣(𝑥, 𝑡) = max {0, max
𝑙1⩽𝑥⩽𝑙2

𝑢0(𝑥)}. (17) 

Thus, in all cases (16)–(17) the following estimate is valid  

 𝑣(𝑥, 𝑡) ⩽ max {0, max
𝑙1⩽𝑥⩽𝑙2

𝑢0(𝑥)}, 

from which it follows  

 𝑢(𝑥, 𝑡) ⩽ 𝑒𝜆𝑇max {0, max
𝑙1⩽𝑥⩽𝑙2

𝑢0(𝑥)} , 𝜆 > 0. 

When 𝜆 ⟶ 0 we get the right-hand side of inequalities (12). The case of the minimum of the solution 

𝑢(𝑥, 𝑡) is proved similarly. The theorem is proved. 

4. Unconditionally monotone finite-difference scheme of second order approximation on uniform 

grids for the Gamma equation  

Using the principle of regularization [8] on a regular uniform grid in space and time  

 �̅� = �̅�ℎ × �̅�𝜏,    �̅�ℎ = {𝑥𝑖 = 𝑙1 + 𝑖ℎ,    𝑖 = 0, 𝑁,    ℎ𝑁 = 𝑙2 − 𝑙1},    �̅�ℎ = 𝜔ℎ ∪ {𝑥0 = 𝑙1, 𝑥𝑁 = 𝑙2}, 
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 �̅�𝜏 = {𝑡𝑛 = 𝑛𝜏,    𝑛 = 0, 𝑁0,    𝜏𝑁0 = 𝑇},    �̅�𝜏 = 𝜔𝜏 ∪ {𝑡𝑁0
= 𝑇}, 

we approximate equation (9) with a difference scheme of the form  

 

𝑦𝑖
𝑛+1−𝑦𝑖

𝑛

𝜏
=

𝜅𝑖
𝑛(𝑦)

ℎ
(𝑎𝑖+1

𝑛 (𝑦)
𝑦𝑖+1

𝑛+1−𝑦𝑖
𝑛+1

ℎ
− 𝑎𝑖

𝑛(𝑦)
𝑦𝑖

𝑛+1−𝑦𝑖−1
𝑛+1

ℎ
)     +

+    𝑏𝑖
+(𝑦)𝑎𝑖+1

𝑛 (𝑦)
𝑦𝑖+1

𝑛+1−𝑦𝑖
𝑛+1

ℎ
+ 𝑏𝑖

−(𝑦)𝑎𝑖
𝑛(𝑦)

𝑦𝑖
𝑛+1−𝑦𝑖−1

𝑛+1

ℎ
,

𝑦𝑖
0 = 𝑢0(𝑥𝑖),    𝑦0

𝑛+1 = 𝑦𝑁
𝑛+1 = 0,

 (18) 

where  

 𝜅𝑖
𝑛(𝑦) = (1 + 𝑅𝑖

𝑛(𝑦))
−1

,    𝑅𝑖
𝑛(𝑦) =

0.5ℎ|𝑟(𝑦𝑖
𝑛)|

𝑘(𝑦𝑖
𝑛)

⩾ 0, 

 𝑏𝑖
+(𝑦) =

𝑟+(𝑦𝑖
𝑛)

𝑘(𝑦𝑖
𝑛)

⩾ 0,    𝑏𝑖
−(𝑦) =

𝑟−(𝑦𝑖
𝑛)

𝑘(𝑦𝑖
𝑛)

⩽ 0, 

 𝑟+(𝑦𝑖
𝑛) = 0.5(𝑟(𝑦𝑖

𝑛) + |𝑟(𝑦𝑖
𝑛)|) ⩾ 0,    𝑟−(𝑦𝑖

𝑛) = 0.5(𝑟(𝑦𝑖
𝑛) − |𝑟(𝑦𝑖

𝑛)|) ⩽ 0, 

 𝑎𝑖+1
𝑛 (𝑦) = 0.5(𝑘(𝑦𝑖+1

𝑛 ) + 𝑘(𝑦𝑖
𝑛)),    𝑎𝑖

𝑛(𝑦) = 0.5(𝑘(𝑦𝑖−1
𝑛 ) + 𝑘(𝑦𝑖

𝑛)). 

Approximation error. The approximation error of the difference scheme (18) has the form  

 𝜓 = −𝑢𝑡 + 𝜅(𝑢)(𝑎(𝑢)�̂��̅�)𝑥 + 𝑏+(𝑢)𝑎(+1)(𝑢)�̂�𝑥 + 𝑏−(𝑢)𝑎(𝑢)�̂��̅�, (19) 

where  

 𝑣 = 𝑣𝑛 = 𝑣(𝑡𝑛),    �̂� = 𝑣𝑛+1 = 𝑣(𝑡𝑛+1),    𝑣𝑥 =
(𝑣𝑖+1−𝑣𝑖)

ℎ
, 

 𝑣�̅� =
(𝑣𝑖−𝑣𝑖−1)

ℎ
,    𝑎(+1)(𝑢) = 𝑎𝑖+1(𝑢),    𝑎(𝑢) = 𝑎𝑖(𝑢). 

Taking into account  

 𝑏+(𝑢) =
𝑟+(𝑢)

𝑘(𝑢)
,    𝑏−(𝑢) =

𝑟−(𝑢)

𝑘(𝑢)
, 

 𝑟+(𝑢) + 𝑟−(𝑢) = 𝑟(𝑢),    𝑟+(𝑢) − 𝑟−(𝑢) = |𝑟(𝑢)|, 

 𝑢𝑡 =
𝜕𝑢

𝜕𝑡
+ 𝑂(𝜏),    (𝑎(𝑢)�̂��̅�)𝑥 =

𝜕

𝜕𝑥
(𝑘(𝑢)

𝜕𝑢

𝜕𝑥
) + 𝑂(ℎ2 + 𝜏), 

 𝑎(+1)(𝑢)�̂�𝑥 = 𝑘(𝑢)
𝜕𝑢

𝜕𝑥
+ 0.5ℎ

𝜕

𝜕𝑥
(𝑘(𝑢)

𝜕𝑢

𝜕𝑥
) + 𝑂(ℎ2 + 𝜏), 

 𝑎(𝑢)�̂��̅� = 𝑘(𝑢)
𝜕𝑢

𝜕𝑥
− 0.5ℎ

𝜕

𝜕𝑥
(𝑘(𝑢)

𝜕𝑢

𝜕𝑥
) + 𝑂(ℎ2 + 𝜏), 

we get  

 𝑏+(𝑢)𝑎(+1)(𝑢)�̂�𝑥 + 𝑏−(𝑢)𝑎(𝑢)�̂��̅� = 𝑟(𝑢)
𝜕𝑢

𝜕𝑥
+ 𝑅(𝑢)

𝜕

𝜕𝑥
(𝑘(𝑢)

𝜕𝑢

𝜕𝑥
) + 𝑂(ℎ2 + 𝜏). 

It follows from (19) that  

 𝜓 =
(𝑅(𝑢))

2

1+𝑅(𝑢)

𝜕

𝜕𝑥
(𝑘(𝑢)

𝜕𝑢

𝜕𝑥
) + 𝑂(ℎ2 + 𝜏) = 𝑂(ℎ2 + 𝜏). 

Therefore the difference scheme (18) has second order of approximation with respect to space and 

first order with respect to time. 

5.  Monotonicity, two-sided and a priori estimates 

We write the difference scheme (18) in the canonical form (1)  

 𝐴𝑖
𝑛𝑦𝑖−1

𝑛+1 − 𝐶𝑖
𝑛𝑦𝑖

𝑛+1 + 𝐵𝑖
𝑛𝑦𝑖+1

𝑛+1 = −𝐹𝑖
𝑛, 𝑖 = 1,2, … , 𝑁 − 1, (20) 
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 𝑦0
𝑛+1 = 𝑦𝑁

𝑛+1 = 0, (21) 

with coefficients defined as follows  

 𝐴𝑖
𝑛 =

𝜏

ℎ2 𝑎𝑖
𝑛(𝑦)(𝜅𝑖

𝑛(𝑦) − ℎ𝑏𝑖
−(𝑦)),    𝐵𝑖

𝑛 =
𝜏

ℎ2 𝑎𝑖+1
𝑛 (𝑦)(𝜅𝑖

𝑛(𝑦) + ℎ𝑏𝑖
+(𝑦)), 

 𝐶𝑖
𝑛 = 1 + 𝐴𝑖

𝑛 + 𝐵𝑖
𝑛,    𝐹𝑖

𝑛 = 𝑦𝑖
𝑛,    𝐷𝑖

𝑛 = 𝐶𝑖
𝑛 − 𝐴𝑖

𝑛 − 𝐵𝑖
𝑛 = 1,    𝑖 = 1, 𝑁 − 1. 

The scheme (20)–(21) is monotone if the positivity conditions of the coefficients (2)–(3) are satisfied 

[8], i.e. if 

 𝐴𝑖
𝑛 > 0,    𝐵𝑖

𝑛 > 0,    𝐷𝑖
𝑛 = 𝐶𝑖

𝑛 − 𝐴𝑖
𝑛 − 𝐵𝑖

𝑛 > 0. 

We need to prove that 𝑎𝑖
𝑛(𝑦) > 0 for all 𝑖, 𝑛. In fact, when 𝑛 = 0, it is obvious that 𝑎𝑖

0(𝑦) =

0.5(𝑘(𝑢0𝑖) + 𝑘(𝑢0𝑖−1)) > 0. Assume that, for any arbitrary 𝑛, 𝑎𝑖
𝑛(𝑦) > 0 is also true. From this 

assumption we have 𝐴𝑖
𝑛 > 0, 𝐵𝑖

𝑛 > 0, 𝐶𝑖
𝑛 > 0. According to Lemma 1 on the base of the estimate (4) 

for arbitrary 𝑡 = 𝑡𝑛 ∈ 𝜔𝜏 and all 𝑖 = 0,1, … , 𝑁, we have  

 min {0, min
1⩽𝑖⩽𝑁−1

𝑦𝑖
𝑛} ⩽ 𝑦𝑖

𝑛+1 ⩽ max {0, max
1⩽𝑖⩽𝑁−1

𝑦𝑖
𝑛}. (22) 

 Using induction on 𝑛, from (22) we obtain the two-sided estimate via the input data without 

assumption for sign-definiteness of input data  

 min {0, min
𝑙1⩽𝑥⩽𝑙2

𝑢0(𝑥)} ⩽ 𝑦𝑖
𝑛+1 ⩽ max {0, max

𝑙1⩽𝑥⩽𝑙2

𝑢0(𝑥)} ,    𝑖 = 0,1, … 𝑁. (23) 

 In view of (23) we obtain 𝑦𝑖
𝑛+1 ∈ �̅�𝑢, i.e. 𝑎𝑖

𝑛+1(𝑦) = 0.5 (𝑘(𝑦𝑖
𝑛+1) + 𝑘(𝑦𝑖−1

𝑛+1)) > 0. Since all 

positivity conditions for the coefficients (2)–(3) are satisfied, then the difference scheme (18) is 

monotone for all ℎ and 𝜏 (i.e. unconditionally monotone). Therefore, the following theorem is proved.  

Theorem 2. Suppose that the conditions (11) are fulfilled. Then the finite-difference scheme (18) is 

unconditionally monotone and for its solution 𝑦 ∈ �̅�𝑢 the above two-sided estimates (23) hold.  

 On the basis of the maximum principle in a standard way we obtain the a priori estimate in the 𝐶-

norm  

Theorem 3. Let the condition (11) be fulfilled. Then for the solution of the difference problem (18) 

the following a priori estimate holds  

 ‖𝑦𝑛‖𝐶̅ ⩽ ‖𝑢0‖�̅� . 

Proof. Since all the coefficients of the scheme satisfy inequalities (2)–(3), on the base of Corollary 

1 we have ‖𝑦𝑛+1‖�̅� ⩽ ‖𝑦𝑛‖𝐶̅. Hence, we obtain the chain of relations  

 ‖𝑦𝑛+1‖𝐶̅ ⩽ ‖𝑦𝑛‖�̅� ⩽ ‖𝑦𝑛−1‖𝐶̅ ⩽ ⋯ ⩽ ‖𝑢0‖�̅� . 

The theorem is proved.  

Remark 1. It is interesting to note that the maximal and minimal values of the difference solution 

do not depend on the diffusion coefficient 𝑘(𝑢) and the convection coefficient 𝑟(𝑢).  

  

Remark 2. For the case of 𝑐 = 0, equation (9) can be written as  

 
𝜕𝑢

𝜕𝑡
= 𝑒−𝑥 𝜕

𝜕𝑥
(�̅�(𝑥, 𝑢)

𝜕𝑢

𝜕𝑥
),    �̅�(𝑥, 𝑢) = 𝑒𝑥𝑘(𝑢),    𝑘(𝑢) = 𝛽′(𝑢). 

Then, as construction of monotone difference schemes for it, we do not need to use the regularization 

principle.  

 Remark 3. The estimates obtained in (23) are fully consistent with the estimates of exact solution 

of differential problem (12).  
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An example of the function 𝜷(𝒖). For the case of the Frey model [7] 𝛽(𝑢) = 𝑢/(1 − 𝜌𝑢)2, 𝜌 > 0 

from (10) we obtain the coefficient 𝑘(𝑢) of the form 𝑘(𝑢) = (1 + 𝜌𝑢)/(1 − 𝜌𝑢)3. Then, by virtue of 

(11), equation (6) will be parabolic if 𝑘(𝑢) > 0, ∀𝑢 ∈ �̅�𝑢, i.e. if  

 −
1

𝜌
< 𝑢(𝑥, 𝑡) <

1

𝜌
. (24) 

 Obviously, for solution of the difference scheme (18), which approximates problem (6)–(8), 

conditions (24) are fulfilled, because by Theorem 1 for all 𝑖 = 0,1,2, … , 𝑁, 𝑛 = 0,1,2, … , 𝑁0 we have  

 −
1

𝜌
< min {0, min

𝑙1⩽𝑥⩽𝑙2

𝑢0(𝑥)} ⩽ 𝑦𝑖
𝑛 ⩽ max {0, max

𝑙1⩽𝑥⩽𝑙2

𝑢0(𝑥)} <
1

𝜌
. 

 Numerical experiment. We consider the particular case of Gamma equation with homogeneous 

boundary conditions  

 

𝜕𝑢

𝜕𝑡
=

𝜕

𝜕𝑥
(

1+𝑢

(1−𝑢)3

𝜕𝑢

𝜕𝑥
) ,    𝜌 = 1,    0 < 𝑥 < 𝜋,    0 < 𝑡 ≤ 1,

𝑢(𝑥, 0) = sin𝑥,    𝑢(0, 𝑡) = 𝑢(𝜋, 𝑡) = 0.
 (25) 

 As the coefficient 𝑘(𝑢) =
(1+𝑢)

(1−𝑢)3 is not defined at 𝑢 = 1, then it is not defined for the initial function 

𝑢0(𝑥) = sin𝑥 at 𝑥 = 𝑥∗ =
𝜋

2
. So we build uniform grid with step ℎ =

𝜋

(2𝑁+1)
 in order to 𝑥𝑖 ≠ 𝑥∗. The 

approximate solution of the problem (25) at 𝑡 = 1, obtained by the difference scheme (18), is shown on 

Fig. 1.  

 

Figure 1. Numerical solution at 𝑡 = 1 with step ℎ =
𝜋

31
≈ 0.1 and 𝜏 = 0.1 

Remark 4: The best numerical results are obtained if the extremal point is not a node of grid. The 

numerical solution is not defined, if x = x∗ is a node of the grid. The solution presented on Fig. 1 is not 

mathematically correct because the solution of (25) is not defined for such choice of the initial data. 

Therefore it is important to construct grid domain so that an extremal point is a grid node.  

6.  Conclusions 

In this paper we develop unconditionally monotone finite-difference schemes of second-order of 

local approximation on uniform grids, based on regularization principle, for the initial boundary problem 

value for the Gamma equation. Two-side estimates of the solution of the scheme are established. Such 

estimates permit not only to prove the non-negativity of the exact solution, but also to find sufficient 

conditions on the input data when the nonlinear problem is parabolic. As a result a priori estimates of 

the approximate solution in the grid norm 𝐶 that depend on the initial and boundary conditions only 

are proved. 
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