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Abstract: Liquid Na2O-4SiO2 has been constructed by molecular dynamics simulation at 1873 K, 

ambient pressure with periodic boundary conditions. To clarify the local environment of atoms, we 

apply the oxygen simplex (OS) which is characterized by the size, forming oxygen atom types and 

the number of sodium atoms located inside the OS. The simulation shows that the liquid comprises 

the Si-O network and sodium atoms are distributed through different OS types forming by four O 

atoms. The number of sodium in particular simplex depends on the size and types of OS. There are 

five types of OS corresponding to values of n=0÷4. Here n is number of bridge oxygens which an 

OS passed through. We also found that the OSs are connected to each other form a long channel 

where hundreds of sodium atoms move. The observed distribution of sodium through Si-O network 

clearly indicates the structural and dynamics heterogeneity in sodium silicate liquid.   
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1. Introduction 

Network-forming liquid of SiO2 with an alkali oxide such as Na2O, Li2O or K2O are of general 

interest for the study of ion transport mechanisms in silicates [1-21]. It is related to the ionic conductivity 

capable, viscosity and diffusivity of material. The Si and O atoms form a disorder tetrahedral network 

and sodium atoms fill into this network and to be network modifier atoms [1, 2]. The diffusion 

coefficient of Si and O atom is very small (about 10-5 cm2/s), and the one of Na is larger [3, 4]. Thus, Si 

and O atoms are immobility atoms and Na atoms are mobility atoms. The distribution of atoms Na in 

space is main cause of structural and dynamics heterogeneity of sodium silicate. The Na atoms locate 
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nearly non-bridge oxygens and form a network of pockets and channels [5, 6]. The Na channel is 

recognized through pre-peak in structural factor function S(q) [7]. The height of prepeak depends on Na 

concentration in system. The structural and dynamics heterogeneity in sodium silicate is proposed by a 

simulation study [8]. In this study, simulation box is divided into small cubes with a volume of about 

1Å3 and obtain more than 50% of the cubes has not been visited yet by Na atoms after investigating time 

2.5 ns. Thus, we suggest that Na atoms carry out selective jumps, the Na atoms being attractive by the 

negative charge regions. The diffusion of Na is characterized by an activation hopping through the Si-

O matrix [9], or the jump processes of Na atoms are appropriately considered to be vacancy-like [10]. 

In addition, Angell [11] and others [7, 12] suggest that there are “preferential pathway” through which 

the Na atoms can easily move. Thus, diffusion mechanism of Na atoms can be the vacancy or free 

movement. It depends on disorder degree of structural network and local environment of Na atoms in 

sodium silicate liquid. 

To clarify the local environment of atoms, we use simplex analytic method which presented detail 

in a recent public [13] with three simplex types: void simplex (VS), oxygen simplex (OS) and cation 

simplex (CS). However, in this research we only use OS which can indicate the structural and dynamical 

heterogeneity in liquid silicate. 

2. Calculation Method 

The liquid Na2O.4SiO2 (NS4) model consists of 7995 atoms (4797 Oxygen, 2132 Silicon and 1066 

Sodium atoms) built at temperature of 1873 K and under ambient pressure with periodic boundary 

conditions. The molecular dynamics program is performed by using MXDORTO code [14]. The Verlet 

algorithm is used to integrate motion equation of atoms with time step of 1.0 fs. Details of the 

interactions used to construct the model are presented in [15]. First, the all atoms were randomly placed 

in a simulation box of size of 5.1 nm. The model is relaxed to equilibrium state after 4x 106 MD steps 

and at 1873 K and pressure of 0.1 MPa. The structural characteristics are calculated and compared with 

the experimental data that show a good agreement with results from works [9, 16]. 

To study local environment of atoms, we divide model into two space parts: one contains O and Na 

atoms and other only contains Si atoms. OS is a sphere passing center of four oxygen atoms and give 

the space regions where only O and Na atoms present. The OSs contain Na atoms provide the spatial 

distribution of Na for the liquid. The OS is characterized by the size, forming oxygen atom types and 

the number of sodium located inside the OS. Let n and h be the number of bridge oxygen (BO) and of Na 

atom located in an OS, respectively. The Na channel is studied by forming cluster of OSs which contain Na 

atoms. If two OSs share a Na atom, they are formed a cluster. The smallest cluster contain one Na atom.  

3. Result Discussions 

The structural characteristics of liquid NS4 model are analyzed via the first peak position of partial 

pair correlation function and coordination number distribution are listed in Table 1.  

It can be seen that the positions of peaks of radial distribution functions are in good agreement with 

experiment [9, 17-20]. In Table 1 also shows that most Si atoms have four-coordination by O while the 

fraction of three coordination by O is very small, about 0.33%. Furthermore, the fraction of O atoms has 

one- and two-coordination by cations (Si or Na) are quite large (about 22.2 and 77.7%, respectively). 

The fraction of NBOs in NS4 is larger than the one in Silica and the tetrahedra network SiO4 is broken 

when Na2O added. 
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Table 1. Structural characteristics of liquid NS4 model. Here Rij and Zij are the first peak position  

(in Å) for different atom pairs and coordination number for Si or O, n is number of bridge oxygen linked  

with an Si, fSi and fO are the fraction of Si and O atoms, respectively.  

i-j Rij Exp. Zij fSi fO n fSi 

O-O 2.60 2.62 [5] 0 0 0.08 1 0.33 

Si-O 1.60 1.617 [1] 1 0 22.2 2 7.41 

O-Na 2.35 2.32 [2,3] 2 0 77.7 3 34.47 

Si-Si 3.08 3.04 [4] 3 0.33 0 4 57.78 

Si-Na 3.45  4 99.67 0   

Na-Na 3.25 3.20 [2,3]           

 

This shows the forming of paths what divided SiO4 network into Si-O subnets. It means the number 

of Si atoms link with NBOs increases (the fraction of Si link with four BOs is 99% in pure SiO2, but 

only is 57.78% in NS4). These results indicate that the network structure of constructed NS4 model 

consist of SiO4 subnets (Si-rich region) and Na- and NBO-rich regions (the modifier network). This 

result also is in good agreement with experiment in [21]. We consider the distribution of OSs in system. 

It shows that most OSs locate in space region between SiO4 units and do not contain Si atom. The OSs 

can contain or do not contain Na atom called VOS and NaOS, respectively. Table 2 lists the fraction of 

OSs. One can see that the fraction of NaOSs is 70% of the total OSs. It means that the 30% OSs are 

VOSs where attract Na atoms in diffusive process. For h=1, the fraction of NaOS is dominated (about 

57.46%) and reduced with h increasing. We also find several NaOS with h=4 (about 0.05%). An OS, 

the smaller g, the higher the negative charge. This OS easy attracts Na atom to become a NaOS. If the 

OS has n=4, it is a neutral region and easy become a VOS. Thus, the electronegativity of OS depends 

on n value. Here, h depends on both charge value and size of OS. To clear this issue, we let k be ratio 

of number of NaOS and VOS with the same value of n (i.e. k = fNaOS/fVOS). The Table 2 also lists the 

fraction of VOS (fVOS), of NaOS (fNaOS) and k for all values g consider. These results indicate that as n 

increases, the number of VOS increase and k decrease quickly. Meanwhile, the fNaOS receives maximum 

values for g=3. It means that the majority of VOS is made by four and three BOs. 

Table 2. Statistic data the fraction of OS vs h and the fraction of VOS, NaOS and k vs n. 

h fOS  n fVOS fNaOS k 

0 30.59  0 0.17 4.41 60.00 

1 57.46  1 1.73 13.17 17.14 

2 10.97  2 9.25 29.00 7.06 

3 0.92  3 32.66 36.20 2.49 

4 0.05  4 56.20 17.23 0.69 

 

It can be seen that with n=0 then k equals 60 and It decreases strongly as n increases. It is interesting 

to note that OSs with n small are always more attractive Na atoms than the one with n large. Therefore, 

the distribution of Na depends on n and locates in rich-NBOs regions. Figure 1 shows the mean radius 

distribution of OS in NS4 liquid. We can see that the radius of OSs varies from 1.6 to 3.9 Å and has a 

peak at 2.7 Å. The result is showed that the radius of about 70% OSs is smaller than 2.7 Å. The number 

of Na atoms in an OS versus the radii is plotted in Figure 2 One can see that as h increases, the Na atoms 

can locate in all these OSs which have the radius around the range 1.8÷3.9 Å. Meanwhile, the radius of 

VOSs also is similar of NaOSs. As h increase, the distribution function of h shifts from left to right. The 

position of peaks is found to be 2.3, 2.6, 2.7, and 3.0 Å with h=0, 1, 2, 3 respectively. The NaOSs with 

h=4 are only 0.07 % of total OSs and not data enough to display on this figure. Hence, the location of 
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Na atoms is described not only by the number of NBOs but also depends on size of OSs. This implies 

that the VOSs belong to five OSs with n=0÷4 and become attractive positions on the mobility Na atoms 

carry out selective jumps in diffusion process. 
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          Figure 1. Mean radius distribution of OS in NS4 model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Radius distribution of OS vs number of Na atoms in NS4 model. 
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only contains one Na atom. As number of Na atoms in a cluster increase from two to tens of atoms, the 

number of clusters decreases to one. Addition to, ratio of volume of cluster and of model also decreases. 

Especially, we find a largest cluster contains 433 Na atoms with volume equals 20% of model volume. 

Table 3. The distribution of cluster in NS4; Where Na is the number of Na atoms tin a cluster;  

Nc is the number of clusters. 

Na 1 2 3 4 5 6 7 10 11 12 15 26 32 35 46 433 

Nc 137 41 21 8 4 5 2 3 2 1 1 1 1 1 1 1 

 

Thus, the clusters containing from tens to hundreds Na atoms are channels. The small clusters are 

pockets. However, the mobility of Na atom in large and small clusters is different. To prove this thing, 

we investigate the modification of cluster versus simulation time. Three investigation periods are 104 

(t1), 10.104 (t2) and 15.104 (t3) MD steps. Obtained data shows that the number of BOs, NBOs, OS and 

Na atoms in one simplex change slightly over time (see Table 4 and 5). The Na atoms break the BOs 

linkages to create new NBOs and BOs linkages. The Na atoms can jump from one NaOS to nearest VOS 

to form a new NaOS. Note that VOS and NaOS are formed at the same time, but number of VOS and 

NaOS change very little over time. However, when investigating the number of NaOS and VOS with h, 

we obtained interesting result as shown in Figure  4. 

Table 4. The distribution oxygen and simplex types in the NS4 model via time 

MD steps 
Oxygen types NaOS 

BO NBO FO h=0 (VS) h=1 h=2 h=3 h=4 

t1 77.72 22.20 0.08 30.76 56.59 11.55 1.03 0.07 

t2 77.63 22.31 0.06 31.54 57.57 10.64 1.00 0.08 

t3 77.57 22.35 0.06 30.64 57.57 10.99 0.93 0.06 

 

Table 5. The time dependence of OS is created by different number of bridge oxygens 

MD 

steps 

OS 

n=0 n=1 n=2 n=3 n=4 

t1 3.62 14.59 33.44 35.68 12.67 

t2 5.03 16.15 30.80 32.51 15.51 

t3 4.16 12.17 35.07 35.28 13.32 

 

It can see that ratio of NaOSs and VOSs changes strongly with time for n=0. This change is reduced 

with n increases. For n=4, the ratio of NaOSs and VOSs is unchanged with time. It shows that, the Na 

atoms in NaOSs with n smaller are more mobility. Significantly, we observe the separation in the largest 

cluster into smaller clusters via time. Namely, the largest cluster at t1 is separated into three smaller 

cluster at t3 time (see Table 6) 

This means that the Na atoms distribute in NBO-rich regions and move free. While, at BO-rich 

region, the Na atoms are scatered and their diffusion mechanism is vacancy. It jumps from one OS to 

other when it is excited. Thus, in the NS4 network, we also show two types of Na atoms: fast Na atom 

is located in the NBO rich region and slow Na atom is located in the rich BO region. 
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Table 6. The change number of Na+ ions in clusters via simulation time 

t1 t2 t3 

NNaC NC NNaC NC NNaC NC 

1 137 1 140 1 158 

2 41 2 38 2 31 

3 21 3 14 3 9 

4 8 4 10 4 8 

5 4 5 12 5 5 

6 5 6 4 6 1 

7 2 7 2 7 1 

10 3 8 2 8 1 

11 2 9 3 9 2 

12 1 10 1 10 2 

15 1 15 1 11 1 

26 1 22 1 13 1 

32 1 24 1 14 1 

35 1 67 1 24 1 

37 1 76 1 26 1 

46 1 96 1 28 1 

433 1 317 1 57 1 
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Figure 4. Time dependence on k in NS4 model. Here g=0,1,2,3,4 is circle, square, up-triangle,  

down-triangle, star symbols, respectively 
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4. Conclusion 

By molecular dynamics simulation and OS analysis method, we investigate quantitatively the space 

and dynamics heterogeneity of Na atoms in NS4 liquid. The results show that, the OSs are distributed 

in space region only containing O and Na atoms. Each Na atom belongs to a certain OS. The OS can 

contain from 0 to 4 Na atoms. The number of Na atoms in an OS depends on charge and size of OS. It 

is shown that the NS4 liquid has a small amount of Na atoms (about 13%) which do not uniformly 

distribute over whole system and locate in small clusters. It means that the structure of NS4 liquid is 

heterogeneity. Furthermore, there is one cluster that only contains a Na atom. It is almost unchanged 

with time. This shows that the small clusters are inserted into SiO4 units and the Na atoms become less 

mobile. Contrary to the small cluster, the large clusters are created by more NBOs, have larger size and 

contain from tens to hundreds Na atoms. The Na atoms in the largest and large clusters change strongly 

with time. It implies that the Na atoms have a quick displacement in large clusters. This is origin of 

dynamics heterogeneity in NS4 liquid. 
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