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Abstract: The nonlinear dynamic response and vibration of porous functionally graded cylindrical 

panel (PFGCP) subjected to the thermal load, mechanical load and resting on elastic foundations are 

determined by an analytical approach as the Reddy’s third order shear deformation theory, Ahry’s 

function… The study results for dynamic response of PFGCP present the effect of geometrical ratio, 

elastic foundations: Winkler foundation and Paskternak foundation; loads: mechanical load and 

thermal load; and the material properties and distribution type of porosity. The results are shown 

numerically and are determined by using Galerkin methods and Fourth-order Runge-Kutta method.  

Keywords: Nonlinear dynamic response, porous functionally graded cylindrical panel, the high order 

shear deformation theory, mechanical load, thermal load, nonlinear vibration.  

1. Introduction 

 With the requirements of working ability such as bearing, high temperature in the harsh 

environment of some key industries such as defense industries, aircraft, space vehicles, reactor vessels 

and other engineering structures, in the world, many advanced materials have appeared, including 

Functionally Graded Materials (FGMs). FGMs is a composites material and is made by a combination 

of two main materials: metal and ceramic. Therefore, the material properties of FGMs will have all the 
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outstanding properties of the two-component materials and vary with the thickness of the structure. With 

these outstanding properties, FGMs have attracted the attention of scientists in the world. In recent years, 

a lot of research carried out  on FGMs, dynamic FGMs. 

Contact mechanics of two elastic spheres reinforced by functionally graded materials  

 (FGM) thin coatings are studied by Chen and Yue [1] . Li et al. [2] determined nonlinear structural 

stability performance of pressurized thin-walled FGM arches under temperature variation field. 

Dastjerdi and Akgöz [3] presented new static and dynamic analyses of macro and nano FGM plates 

using exact three-dimensional elasticity in thermal environment. Wang and Zu [4] researched about 

nonlinear dynamic thermoelastic response of rectangular FGM plates with longitudinal velocity. 

Dynamic response of an FGM cylindrical shell under moving loads is investigated by Sofiyev [5]. Wang 

and Shen [6] published nonlinear dynamic response of sandwich plates with FGM face sheets resting 

on elastic foundations in thermal environments. Shariyat [7] gave vibration and dynamic buckling 

control of imperfect hybrid FGM plates with temperature-dependent material properties subjected to 

thermo-electro-mechanical loading conditions. Nonlinear dynamic analysis of sandwich S- FGM plate 

resting on pasternak foundation under thermal environment are reseached by Singh and Harsha [8]. 

Nonlinear dynamic buckling of the imperfect orthotropic E- FGM circular cylindrical shells subjected 

to the longitudinal constant velocity are studied by Gao [9]. Reddy and Chin [10] studied thermo-

mechanical analysis of functionally graded cylinders and plates. Babaei et al. [11] investigated thermal 

buckling and post-buckling analysis of geometrically imperfect FGM clamped tubes on nonlinear elastic 

foundation. 3D graphical dynamic responses of FGM plates on Pasternak elastic foundation based on 

quasi-3D shear and normal deformation theory is presented by Han et al [12]. Ghiasian et al. [13] 

researched about dynamic buckling of suddenly heated or compressed FGM beams resting on nonlinear 

elastic foundation. Geometrically nonlinear rapid surface heating of temperature-dependent FGM arches 

are gave by Javani et al. [14]. Shariyat [15] presented dynamic thermal buckling of suddenly heated 

temperature-dependent FGM cylindrical shells, under combined axial compression and external 

pressure. Babaei et al. [16] published large amplitude free vibration analysis of shear deformable FGM 

shallow arches on nonlinear elastic foundation. 

In fact, porous materials appear around us and play in many areas of life such as fluid filtration, 

insulation, vibration dampening, and sound absorption. In addition, porous materials have high rigidity 

leading to the ability to work well in harsh environments. In recent years, porous materials have been 

researched and applied along with other materials to create new materials with the preeminent properties 

of component materials. Porous functionally graded (PFG) is one of the outstanding materials among 

them and has research works such as: Gao et al. [17] researched about dynamic characteristics of 

functionally graded porous beams with interval material properties. Dual-functional porous copper 

films modulated via dynamic hydrogen bubble template for in situ SERS monitoring electrocatalytic 

reaction are proposed by Yang et al. [18]. Foroutan et al. [19] investigated nonlinear static and dynamic 

hygrothermal buckling analysis of imperfect functionally graded porous cylindrical shells. Li [20] 

presented nonlinear vibration and dynamic buckling analyses of sandwich functionally 

graded porous plate with graphene platelet reinforcement resting on Winkler–Pasternak elastic 

foundation. Li [21] carried out experimental research on dynamic mechanical properties of metal 

tailings porous concrete. Transient [22] published response of porous FG nanoplates subjected to 

various pulse loads based on nonlocal stress-strain gradient theory. Esmaeilzadeh and Kadkhodayan 

[23] researched about dynamic analysis of stiffened bi-directional functionally graded plates with 

porosities under a moving load by dynamic relaxation method with kinetic damping. Vibration analysis 

of magneto-electro-elastic heterogeneous porous material plates resting on elastic foundations are 

studied by Ebrahimi et al [24]. Arshid and Khorshidvand [25] presented free vibration analysis of 

saturated porous FG circular plates integrated with piezoelectric actuators via differential quadrature 
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method. Micro temperature-dependent FG porous plate: Free vibration and thermal buckling analysis 

using modified couple stress theory with CPT and FSDT are researched by Shojaeefard [26]. Demirhan 

and Taskin [27] investigated bending and free vibration analysis of Levy-type porous functionally 

graded plate using state space approach.  

The proposed method used in this study is the third-order shear deformation theory and the effect of 

the thermal load has been applied in a number of case studies such as Zhang [28] published nonlinear 

bending analysis of FGM beams based on physical neutral surface and high order shear deformation 

theory. Reddy and Chin [29] investigated thermo-mechanical analysis of functionally graded cylinders 

and plates. Modeling and analysis of FGM rectangular plates based on physical neutral surface and high 

order shear deformation theory is presented by Zang [30]. In [31], Thon and Bélanger presented EMAT 

design for minimum remnant thickness gauging using high order shear horizontal modes. Dynamic 

analysis of composite sandwich plates with damping modelled using high order shear deformation 

theory are carried out by Meunier and Shenoi [32]. Cong et al.[33] investigated nonlinear dynamic 

response of eccentrically stiffened FGM plate using Reddy’s TSDT in thermal environment. Stability 

of variable thickness shear deformable plates—first order and high order analyses are gave by Shufrin 

and M. Eisenberger [34]. In [35], Stojanović et al showed exact closed-form solutions for the natural 

frequencies and stability of elastically connected multiple beam system using Timoshenko and high 

order shear deformation theory. A high order shear element for nonlinear vibration analysis of composite 

layered plates and shells are proposal by Attia and El-Zafrany [36]. Khoa et al [37] observed nonlinear 

dynamic response and vibration of functionally graded nanocomposite cylindrical panel reinforced by 

carbon nanotubes in thermal environment. In [38], Allahyari and Asgari found that thermo-mechanical 

vibration of double-layer graphene nanosheets in elastic medium considering surface effects; developing 

a nonlocal third order shear deformation theory. Wang and Shi [39] presented a refined laminated plate 

theory accounting for the third order shear deformation and interlaminar transverse stress continuity.  

From the literature review, the authors often used the high order shear deformation theory to 

investigate the nonlinear static, nonlinear dynamic or nonlinear vibration of FGM or plate porous 

funcationally graded (PFG). For the nonlinear dynamic and vibration of PFGCP has not carried out. 

Therefore, in order to observe the nonlinear dynamic and vibration of PFGCP under mechanical load 

and thermal load, using the Reddy’s high order shear deformation theory and Ahry’ function are 

proposaled in this paper. The natural frequency of PFGCP is obtained by using cylindrical panel fourth-

order Runge-Kutta method. Besides, the effect of geometrical ratio, elastic foundations: Winkler 

foundation and Paskternak foundation, the material properties and distribution type of porous on the 

modeling will be shown. 

2. Theoretical formulation 

Fig.1 show a PFGCP resting on elastic foundations included Winkler foundation and Pasternak 

foundation in a Cartesian coordinate system , ,x y z , with 

xy  - the midplane of the panel  

z - the thickness coordinator,  / 2 / 2h z h   .  

a - the length 

b - the width 

h - the thickness of the panel.  

R - the radius of the cylinderical panel.  
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Fig. 1. Geometry of the PFGCP on elastic foundation. 

The volume fractions of metal and ceramic, 
mV  and 

cV , are assumed as [25] with using a simple 

power-law distribution:                     

2
( ) ; ( ) 1 ( ),

2

N

c m c

z h
V z V z V z

h

 
   
 

 
(1) 

in which the volume fraction index N , subscripts m  and c  stand for the metal and ceramic 

constituents, respectively. 

The material properties of PFGCP with prosity distribution are given as 
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with  

, , , ,cm c m cm c m cm c m cm c mE E E K K K              (4) 

and in this paper, the Poisson ratio  z  can be considered constant ( )z v  .                                    

 

a. Porosity - I 

 

b. Porosity - II 

Fig. 2. The porosity distribution type. 
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2.1. Governing equations 

By using the Reddy’s high order shear deformation theory (HSDT), the governing equations and the 

dynamic analysis of PFGCP are determined. 

The train-displacement relations taking into account the Von Karman nonlinear terms as [10,29,33]: 
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 (6) 

in which  

2

1 4 / 3 , ,x yc h     

,x y  - normal strains,  

xy  - the in-plane shear strain,  

,xz yz   - the transverse shear deformations 

, ,wu v  - the displacement components along the , ,x y z  directions, respectively 

,x y   - the slope rotations in the  ,x z  and  ,y z  planes, respectively. 

 The strains are related in the compatibility equation [27, 28]: 
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The effect of temperature will be descirbed in Hooke's law for a PFGCP as:  
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in which T  is temperature rise.   

The force and moment resultants of the PFGCP can be obtained with equations of  stress components 

along with thickness of PFGCP as: 
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Replacing Eqs. (3), (5) and (8) into Eq. (9) gives:                                            
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and the coefficients ( 1 5,7)iE i    are give in Appendix. 

From Eq. (10), The inverse expression are obtained:  
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The equations of motion are [26] based on HSDT: 
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(14) 

and the coefficients ( 0 4,6)iI i    are noted in Appendix, and  

1k  - Winkler foundation modulus 

2k - Pasternak foundation model 

q - an external pressure uniformly distributed on the surface of the plate 

 - damping coefficient.   

The stress function  , ,f x y t  is introduced as                                         
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2 2 2

2 2
, , .x y xy

f f f
N N N

y x x y

  
   
   

 (15) 

Replacing Eq. (15) into the two first Eqs. (13) yields 

22 3

1 31

2 2 2

0 0

w
,x c IJu

t I t I x t

 
  

   
 (16a) 

22 3

1 31

2 2 2

0 0

w
.

y c IJv

t I t I y t

 
  

   
 

  

(16b) 

By substituting Eqs. (16) into the Eqs. (13) and  Eqs. (13) can be rewritten 

2 2 2

2 2 2

2 22 2 2

1 1 22 2 2 2

2 22 4 4
21 3

0 0 1 62 2 2 2 2

0

4 1

w w w
2

w w
2 w

w w w w
2

y yx x
x xy y

xy y yx

Q RQ R
c N N N

x y x y x x y y

P P NP
c k k q

x x y y x y R

c I
I I c I

t t I x t y t

J c



      
      

        

      
                  

     
       

       



33

1 3 1 1 3 1
4 12 2

0 0

,
yxJ I c J I c

J c
I x t I y t

    
    

      

    

(17a) 

22 3

1 3 11
1 2 2 1 42 2

0 0

w
,

xy xyx x x
x x

M PM P c I JJ
c Q c R K c J

x y x y I t I x t

         
            

           
 (17b) 

22 3

1 3 11
1 2 2 1 42 2

0 0

w
.

xy y xy y y

y y

M M P P c I JJ
c Q c R K c J

x y x y I t I y t

         
            

           
 (17c) 

Substituting Eqs. (12) and (15) into the equation (7), we have:  

2
4 4 4 2 2 2

4 2 2 4 2 2

1

1 w w w
2 .

f f f

E x x y y x y x y

        
      

          
   (18) 

The system of motion Eqs. (17) is rewritten as Eq.(19) by replacing Eq. (6) into Eq. (10) and then 

into Eqs. (17): 

       
2

11 12 13 0 02

32 2 34 4
21 3 1 3 1 1 3 1
1 6 4 1 4 12 2 2 2 2 2

0 0 0

w w
w w, 2

w w
,

x y

yx

L L L P f q I I
t t

c I J I c J I c
c I J c J c

I x t y t I x t I y t

  



 
     

 

        
            

             

 
(19a) 

     
22 3

1 3 11
21 22 23 2 1 42 2

0 0

w
w ,x

x y

c I JJ
L L L K c J

I t I x t


 

    
        

     
 

(19b) 



V.M. Anh, N.D. Duc / VNU Journal of Science: Mathematics – Physics, Vol. 35, No. 4 (2019) 1-21 

 

9 

     
22 3

1 3 11
31 32 33 2 1 42 2

0 0

w
w ,

y

x y

c I JJ
L L L K c J

I t I y t


 

    
        

     
 

(19c) 

and the  ij 1 3, 1 3L i j     and P  are noted in Appendix. 

In next section, in order to determined nonlinear dynamical analysis of PFGCP using the third order 

shear deformation theory, the Eqs. (18)-(19) are used along with boundary conditions and initial 

conditions 

2.2. Boundary conditions 

In order to determined nonlinear dynamical analysis of PFGCP, the edges of the PFGCP are simply 

supported and immovable (IM) and boundary conditions are [27, 28]: 

0

0

w 0, 0, ,

w = 0, 0, ,

y x x x x

x y x y y

u M P N N at x a

v M P N N at y b





      

     
    (20) 

in which 0 0,x yN N  are forces along the x and y axis. 

Wiht the boundary condition (20) and In order to solve Eqs. (18) and (19), the approximate solutions 

can be written as [26]:  

   

   

   

w , , W sin sin ,

, , cos sin ,

, , sin os ,

x x

y y

x y t t x y

x y t t x y

x y t t xc y

 

  

  



 



 (21) 

with  

,
m n

a b

 
    and , 1,2,...m n  are the numbers of half waves in the direction ,x y , , ,x yW    - 

the amplitudes which are functions dependent on time. 

The stress function is defined as: 

      2 2

1 2 0 0

1 1
, , cos2 cos2 ,

2 2
x yf x y t A t x A t y N y N x      

                                                  

(22a) 

with 
2 2

2 21 1
1 22 2

; .
32 32

E E
A W A W

 

 
   (22b) 

2.3. Nonlinear dynamical analysis 

In ordet to obtain Eqs. (23), Eqs. (21) and (22) are replaced into the Eq. (19) after that applying 

Galerkin method: 

 
2

2 2 3

11 0 0 12 13 1 2 02 2

22

2 22 2

16 W W
+ 2

,

x y x y

yx

l N N W l l nW q n I
mn t t

m n

a t b t

  


 
 

 
         
   

  
 

 

 (23a) 

2 2

21 22 23 1 22 2

W
,x

x y

m
l W l l

t a t


 
  

     
 

 (23b) 
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2 2

31 32 33 1 22 2

W
W ,

y

x y

n
l l l

t b t


 
  

     
 

 (23c) 

Where 

2

1 3 11
1 2 2 1 4

0 0

;
c I JJ

K c J
I I

     ,  

 
2 2

11 1 1 3 2 3 1 5

2
2 2 2 2 22 2

1 4
7 1 22

1

1
3 3

2(1 )

1
+ ,

1

m n
l E c E c E c E

a b

c Em n m n m
E k k

a b E a b a R

 



    



    
                  

             
                                   

 

 
3 2

1 2 4 4
12 1 1 3 2 3 1 5 5 1 72

1 1

22

2 4 4
1 5 1 72 2

1 1

1
3 3

2(1 ) 1

1 1
,

1 1 1 1

c E E Em m
l E c E c E c E E c E

a a E E

E E E m n
c E c E

v E E a b

 

 

   

  

   
                    

         
              

            

     

 
3 2

1 2 4 4
13 1 1 3 2 3 1 5 5 1 72

1 1

22

2 4 4
1 5 1 72 2

1 1

1
3 3

2(1 ) 1

1 1
,

1 1 1 1

c E E En n
l E c E c E c E E c E

b b E E

E E Ev v m n
c E c E

E E a b

 

 

 

   

   
                    

         
              

            

 

4 4

1
1 ,

16

E m n
n

a b

     
             

2 22
2 3

2 0 1 6

0

,
I m n

n I c I
I a b

       
                 

   

2 2 2

1 1 4 2 4
21 1 7 52

1 1

1 1 3 2 3 1 5

2 2 2 2
22 2 4 4

22 3 1 5 1 72

1 1 1

+
1

1
3 3 ,

2(1 )

1 1
2

1 2(1 )

c c E E Em m n
l c E E

a a b E E

m
E c E c E c E

a

E E E Em n
l E c E c E

a b E E E

  







 

 

     
                 

      

         
                          

   

 

1 1 3 2 3 1 5

2 22
22 2 4 4

23 3 1 5 1 7

1 1 1

1
3 3 ,

2(1 )

1
2 ,

2 1

E c E c E c E

E E E Emn
l E c E c E

ab E E E











      

    
          

     
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 

 

2 22

1 4 2 4
31 1 7 1 5 1 1 3 2 3 1 52

1 1

2 22
22 2 4 4

32 3 1 5 1 7

1 1 1

2

33 2

1
3 3 ,

1 2(1 )

1
2 ,

2 1

1 1

1 2(1

c E E En m n n
l c E c E E c E c E c E

b E E a b b

E E E Emn
l E c E c E

v ab E E E

n
l

b

   

 







      
                           

    
          

     

 
   

  

 

2 2 2
22 2 4 4

3 1 5 1 7

1 1 1

1 1 3 2 3 1 5

2
)

1
3 3 ,

2(1 )

E E E Em
E c E c E

a E E E

E c E c E c E







       
                   

      

   

In order to investigate the effect of thermal load on the PFGCP. The modeling are simply supported and 

immovable in all edges. In other words, boundary conditions of case stud is 0u  (on 0,x a ) and 

v 0  (on 0,y b ), and and is satisfied equations as [10, 29]: 

0 0 0 0

0, 0.

b a a b
u v

dxdy dxdy
x y

 
 

       (24) 

        With Eqs. (6) and (12) along with (15), Ep (25) is determined as:  

   

   

2

2 1 4
, , , , ,

1 1 1 1

2

2 1 4
, , , , ,

1 1 1 1

1 1
,

2

1 1
.

2

a
yy xx x x x x xx

a
xx yy y y y y yy

E c Eu w w
f vf w

x E E E R x E

E c Ev w
f vf w

y E E E y E

 

 

  
        

  

   
       

  

 (25) 

In order to obtain Eqs. (26), Eqs. (21) and (22) are placed into Eq. (25) then the obtained result are 

replaced into Eq. (24) we have:  

 
    

 
 

2 2

0 2 1 4 1 42 2

2 2 21

2

4

1 1

,
8 1

a
x x yN E c E v c E v W

v mn v

E
v W

v

   


 


         
  

 


 (26a) 

 
    

 
 

2 2

0 2 1 4 1 42 2

2 2 21

2

4

1 1

.
8 1

a
y x yN E c E v c E v W

v mn v

E
v W

v

   


 


         
  

 


 (26b) 

Putting Eqs. (26) into the Eq. (23). We obtain: 

l
11

+
mp

a

æ

èç
ö

ø÷

2

+
np

b

æ

èç
ö

ø÷

2æ

è
ç
ç

ö

ø
÷
÷

F
a

1- v

é

ë

ê
ê

ù

û

ú
ú
W + l

12
F
x
+ l

13
F
y
+ l

14
F
x
W + l

15
F
y
W+l

16
W 2 + l

17
W 3

+
16

mnp 2
q = n

2

¶2 W

¶t2
+ 2e I

0

¶W

¶t
+ r

2

mp

a

¶2 F
x

¶t2
+ r

2

np

b

¶2 F
y

¶t2
,

          (27a) 

2 2

21 22 23 1 22 2

W
,x

x y

m
l W l l

t a t


 
  

     
 

          (27b) 
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2 2

31 32 33 1 22 2

W
W ,

y

x y

n
l l l

t b t


 
  

     
 

 
         (27c) 

with  

 

 

 

2 2

2 1 4

14 2 2

4

,
1

m n
E c E v

a b m
l

amn v

 





    
          




 

 

 

2 2

2 1 4

15 2 2

4

,
1

m n
E c E v

a b n
l

bmn v

 





    
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The Eqs. (27) are used to dertermine dynamic analysis of PFGCP with suported by elastic 

foundations along with the effect of temperature with the appearance of the coefficient 
a . 

In order to obtain the natural frequencies    of PFGCP, solving determinant of matrix (28) with 

linear coefficients taken from Eqs. (27) along with 0q  . The obtained results are three natural 

frequencies, the smallest value will be selected. 
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(28) 

3. Numerical results and discussion 

In this paper, consider PFGCP is under the influence of a uniformly distributed load on the surface 

with equations in the harmonic function sinq Q t   with Q is the amplitude of uniformly excited load. 

Besides, the fourth-order Runge-Kutta method is used to solve equations (27) and the material properties 

of the component material are given as [40]:  
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3.1. Natural frequency 

In order to verify the reliability of the used method, the numerical results of this paper will be 

compared with the published results of Duc et al [40]. In the Duc author's paper, the used method is high 

order shear deformation for FGM plate. In order to obtain the highest accuracy of the comparison results, 

the modeling of this paper was brought to the same format as the modeling in Duc’s paper by R = 

infinity. The comparison results of the free natural frequency are shown in Table 1. It can be seen that 

the results of both papers are not much different. It verifies  that the used method is reliable. 

Table 1. Comparison of natural frequency  1s  of PFGCP with other paper with same conditions as  

/ 1, / 20, 1a b a h N   .  

 1 2;k k  

 / ; .GPa m GPa m  
 oT C  

Natural frequency  1s  

Duc et al [40] Present study 

 0;0  

0 1941.73 1922 

50 1570.25 1522 

105 1015.19 1082 

 0.25;0  

0 2303.00 2341 

50 1999.79 1998 

105 1601.28 1687 

 0.25;0.02  

0 2779.46 2790 

50 2533.92 2576 

105 2232.86 2293 

The natural frequencies  1s  of PFGCP with the influence of index N , modes  ,m n  along with 

1 2/ 1, / 20, 0, 0a b a h k k    , 100oT C   and using type 2 of porosity distribution. We can see that 

the natural frequencies will raise when modes  ,m n  increase in which index N is constant. In contrast, 

when index N increase in which modes  ,m n  is constant, the natural frequencies increase. Form 

equation (1), it can be explained that index N = 0 corresponding to isotropic uniform panel is  made 

from ceramic materials, N = 1 is the case when the ceramic and metal components are distributed 

linearly over the thickness of the structure wall and when N increase, the volume ratio of the metal 

component in the structure increases. 

Table 2. The natural frequencies  1s  of PFGCP with the influnece of index N , modes  ,m n  along with 

1 2/ 1, / 20, 0, 0, / 400a b a h k k R h      and 100 .oT C    

N  

 
1

1, 1m n



 
 

 
2

1, 3m n



 
 

 
3

1, 5m n



 
 

 
4

3, 5m n



 
 

 
5

5, 5m n



 
 

0.5 2702 11175 27051 34564 48871 

1 2434 9766 24060 30838 43767 

3 2251 8817 21037 26808 37785 

5 2172 8505 20218 25719 36137 

12 2080 8174 19369 24594 34440 

∞ 1629 6195 14636 18610 26149 
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Table 3 shows the natural frequencies  1s  of PFGCP with the influnece of ratio /a b , elastic 

foundation, porosity distribution type along with / 20, 1, 100 ,oa h N T C     

( , ) (1,1), / 400m n R h  . It can easily see that the natural frequencies increase when ratio /a b  raises 

as well as when modeling is supported by elastic foundations. Furthermore, the comparison of the effect 

between type 1 of porosity distribution and type 2 of porosity distribution are shown in table 3. The 

effect of type 2 of porosity distribution on the natural frequencies is smaller than the effect type 1 of 

porosity distribution. 

Table 3. The natural frequencies  1s  of PFGCP with the influnece of ratio /a b , elastic foundation 

( , ) (1,1), / 400m n R h   / 20, 1, 100 .oa h N T C     

 1 2;k k  

 / ; .GPa m GPa m  
/a b  

Natural frequency  1s  

Type 1 Typ 2 

 0;0  

1 2525 2434 

1.5 3757 3393 

2 5448 5068 

 0.2;0  

1 2757 2449 

1.5 3917 3569 

2 5559 5187 

 0.2;0.04  

1 3528 3292 

1.5 4816 4538 

2 6554 6242 

3.2. Nonlinear dynamic response 

 

Fig. 2. Comparision between two type of porosity distribution in PFGCP. 

Figure 2 shows the effect of porosity distribution on nonlinear dynamic response of the PFGCP with 

/ 1, / 20, 0, 0.1a b a h T      . It can easily see that the amplitude of deflection for PFGCP in case 

Porosity I bigger more than the amplitude of deflection for PFGCP in Porosity II. In other words, the 

porosity distribition Porosity II will enhance the loading carrying capacity of PFGCP more than the 

Porosity I. Thus, other results will use the Porosity II to investigate the effect of other factors on the 

nonlinear dynamic response of the panel. 
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Figures 3 and 4 give the nonlinear dynamic response of PFGCP with the influence of ratio /a b , 

ratio /a h  and supported by elastic foundations. The amplitude of deflection of the PFGCP will raise 

when increasing ratio /a h  or decrease /a b . In figure 3, the amplitude of deflection has the highest 

value with / 1a b  . When increasing /a b from 1 to 2, the amplitude of deflection decreases about 7 

times. In figure 4, the amplitude of deflection has the smallest value with / 40a h  . When increasing 

/a h  from 20 to 40, the amplitude of deflection raise  about 9 times. 

 

Fig. 3. The nonlinear dynamical response of the PFGCP with influence of effect of ratio /a b . 

The influence of index N on the nonlinear dynamic response of the PFGCP is investigated in 

figure 5. From figure 5 can see that the amplitude vibration of the PFGCP will raise when the index  N 

increase and change about 2.3 times. This behavior can be explained that the index N increase results 

in a volume ratio of ceramic more bigger than a volume ratio of metal. It leads to bigger change in 

Elastic modulus, in other words, it leads to decrease load carrying capacity of the PFGCP. 

 

Fig. 4. The nonlinear dynamical response of the PFGCP with influence of effect of ratio /a h . 
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Fig. 5. Effect of power law index N  on nonlinear dynamical response of the PFGCP. 

The influence of elastic foundations on the nonlinear dynamic response of the PFGCP with 

/ 1, / 20, 1, 100oa b a h N T C      are shown in figures 6 and 7. It clear that the elastic foundations: 

Winkler foundation (figure 6) and Pasternak foundations (figure 7) has a positive influence on the 

amplitude vibrations. When increasing the Winkler foundation, the Pasternak foundations, the amplitude 

vibrations will decrease. But the influence of the Pasternak foundation better than Winkler foundations, 

the amplitude vibrations will enhance about 200% with the change of the Winkler foundation in which 

the amplitude vibrations will enhance about 250%. In order to enhance the load carrying capacity of 

modeling, the elastic foundations have an important role. 

 

Fig. 6. Effect of the linear Winkler foundation on nonlinear dynamical response of the PFGCP. 
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Fig. 7. Effect of the Pasternak foundation on nonlinear dynamical response of the PFGCP. 

The influence of exciting force amplitude on nonlinear dynamic response of the PFGCP with 

 21500,1800,2500 /Q N m  and 100oT C   are proposed in figure 8. The amplitude of vibration 

will raise when the excited force amplitude increase. In other words, the exciting force amplitude 

decrease, the amplitude of vibration will decrease. 

 

Fig. 8. Nonlinear dynamic responses of the PFGCP with different loads.  

The nonlinear response of the  PFGCP with the effect of uniform temperature is presented in figure 

9. From figure 9, it can easily seen that the uniform temperature has a negative influence on the 

amplitude deflection of the cylindrical panel PFG. The amplitude deflection of the PFGCP will increase 

when the uniform temperature rise. It can be explained that the uniform temperature changes the stiffness 

matrix. 
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Fig. 9. Effect of uniform temperature rise on nonlinear response of the PFGCP.  

4. Conclusions 

This is the first paper uses the high order shear deformation theory and Ahry function to investigate 

the nonlinear dynamic response and vibration of panel FGM with porosity distribution. Besides, the 

PFGCP is supported by elastic foundations and under mechanical load, thermal load. By using the 

Galerkin method as well as the four-order Runge-Kutta method, the numerical results for nonlinear 

dynamic response of modelings are described by figure and table with the influences of the materials 

properties, thermal load, mechanical load, elastic foundations, geometrical parameters, the porosity 

distribution type. This paper obtained some remarkable results as: 

- The porosity distribution type 2 will enhance the loading carrying capacity of PFGCP more than 

the porosity distribution type 1. 

- The amplitude of deflection of the PFGCP will raise when increasing ratio /a h  or decrease /a b . 

- The amplitude vibration of the PFGCP will raise when the index N increase and changes about 2.3 

times. 

- When increasing the Winkler foundation, the Pasternak foundations, the amplitude vibrations will 

decrease. The influence of the Pasternak foundation better than Winkler foundations. 

- The amplitude of vibration will raise when the exciting force amplitude increase. 

- The uniform temperature has a negative influence on the amplitude deflection of the cylindrical 

panel PFG. The amplitude deflection of the PFGCP will increase when the uniform temperature rise. 
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