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Abstract. The electron – optical phonon scattering is considered in detail to studying the 

Ettingshausen effect in doped semiconductor superlattice under the influence of phonon 

confinement and laser radiation. The analytical expressions for tensors and the Ettingshausen 

coefficient are obtained by using the kinetic equation method. The Ettingshausen coefficient 

depends on temperature of the sample, amplitude and frequency of laser radiation, magnetic field 

and the quantum number m specific for the confinement of phonon. The dependences are clearly 

displayed in the numerical results for GaAs:Be/GaAs:Si doped semiconductor superlattice. The 

magnetic field makes the Ettingshausen coefficient change in quantitative under the influence of 

temperature or laser amplitude and change the resonance condition. The numerical results show that 

both resonance condition and resonance peaks position are affected by the increase of quantum 

number m. We also get the result corresponding to the unconfined optical phonon case when m is 

set to zero. Due to the change of the wave function and energy spectrum of electrons, most of results 

for the Ettingshausen effect in doped semiconductor superlattice obtained are different from the case 

of bulk semiconductor. Moreover, in comparison with the case of unconfined optical phonon, under 

the influence of phonon confinement effect, the Ettingshausen coefficient changes in magnitude, the 

number and position of resonance peaks.   

Keywords: Doped semiconductor superlattice, Ettingshausen effect, Quantum kinetic equation, 

confined optical phonons.   

1. Introduction  

It’s well known that the confinement of electron as well as phonon is the main cause of changes in 

the properties of kinetic effects in two-dimensional semiconductor systems (2DS) and doped 
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semiconductor superlattice (DSS) in particular. Many papers dealing with this issue have been published 

[1-3]. Due to the emission of confined longitudinal optical (LO) phonon in GaAs-Al0.45Ga0.55As 

superlattice, the dispersion of the relaxation time depends strongly on the total energy [1]. The electron 

– phonon scattering strength is strongly influenced by the polar optical phonon confinement in 

quantum well [2]. In comparison with the case of bulk phonons, due to the confinement of LO-

phonon in doped semiconductor superlattices, the magnitude of magnetoresistance and the Hall 

coefficient are decreased [3]. 

The Ettingshausen effect is known as an unexpected result when Ettingshausen and his PhD student 

studied Hall effect in Bismuth. That has opened up a new field of research on magneto-thermoelectric 

phenomena. This effect has been studied in various materials such as metals [4], graphene [5], bulk 

semiconductor [6] and especially low-dimensional semiconductor systems (LDS) [7-11]. In parabolic 

quantum well with in-plane magnetic field, Ettingshausen effect change sign with temperature even if 

the mechanism of scattering remains unchanged [7]. Due to the influence of the dimension effects and 

laser radiation (LR), the Ettingshausen coefficient (EC) in quantum well is 102 times bigger than that in 

bulk semiconductor [8]. When the magnetic field increases, the curve representing the dependence of 

longitudinal magneto-thermoelectric coefficient on two-dimensional concentration in a quantum well 

shifts downwards [9]. The oscillations of absorbed microwave power due to Landau quantization causes 

the appearance of a peak of the longitudinal diffusive thermopower in quantum wells at cyclotron 

absorption frequency modified by heating mechanism [10]. The Shubnikov-de Haas oscillation 

appeared when surveying the dependence of EC on the magnetic field in DSS [11].  However, Ref. [7-

11] have not taken interested in the confinement of phonon. So, the Ettingshausen effect in DSS under 

the influence of confined phonon is opened to study. 

In this work, the influence of LR is taken into account for the Ettingshausen effect in DSS and the 

confined electron – confined optical phonon (COP) scattering is considered in detail. This article is 

organized as follows: the effect of COP on the EC in DSS is outlined in Sec.2; the numerical results and 

discussion for GaAs:Be/GaAs:Si DSS are given by Sec.3; Sec.4 shows conclusions.  

2. The Calculation of EC in DSS 

We apply the quantum kinetic equation method to study the Ettingshausen effect in a simple model 

of DSS in which the electron can move freely in the x-y plane. A magnetic field with  0,0,B B , a dc 

electric field with  1 1,0,0E E  and the LR  0 sin E E t  were applied for our model [3]. From 

Hamiltonian of electron - COP system in DSS, the quantum kinetic equation for electrons is obtained. 

After some analytic transformations, we found out the expression for the Ettingshausen coefficient: 
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In which  xxσ m ,  xyφ m , xxθ ,  xxα m are respectively components of tensors: 
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F  is the Fermi level;  is the momentum 

relaxation time.  
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are cyclotron frequency and plasma frequency, respectively (nD is the doping 

concentration of the DSS). 

From above analytic expression, we can see clearly that the EC depends on many quantities such as 

amplitude and frequency of the LR, the magnetic induction, the temperature. Especially, the EC depend 

in complicated way on the m-quantum number specific for COP. We also obtained the expression that 

corresponds to un-COP when m is set to zero. 

3. Numerical Results and Discussion 

We have considered a GaAs:Be/GaAs:Si DSS with characteristic parameters: me = 0.067m0, 

e=2.07e0, vs = 87300ms
−1

, εF = 50eV, τ (εF) = 10
−12

s [3], N = 1, N’ = 3; n and n’ rate from 1 to 3. 

 

(1a) 

 

(1b) 

Figure 1. The denpendence of the EC on the temperture. 

According to Figure 1, the EC exerts non-linear dependence on temperature. Figure (1a) shows that 

the phonon confinement reduces the EC in DSS. The difference between two cases (with and without 

phonon confinement) is obvious at high temperature. As we see in Figure (1b), the magnetic field also 

affects the EC in temperature range surveyed when optical phonons are confined. The EC increases 
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when the magnetic induction increases. However, the magnetic field does not change the rule of the 

EC’s dependence on temperature.  

 

(2a) 

 

(2b) 

Figure 2. The dependence of the EC on the laser frequency. 

As we can see in Figure 2, the EC oscillates when the laser frequency changes. Figure (2a) describes 

the dependence of EC on laser frequency in two cases: with and without confinement of optical phonons. 

In COP case, the EC not only increases in quantitative but also enhances the number of resonance peaks. 

The resonance peaks correspond to the condition:    1' 2p m cn n eE l        or 

  1' 2p m cn n eE l      with  
22 2 /m o sv m L    . When m is set to zero, the 

frequency of optical phonon is defined 0m  . The increase of m leads to the increase of 
m  and 

make resonance condition change. So, the additional resonance peaks are appeared. Therefore, the 

confinement of optical phonon not only makes the EC in DSS increase but also causes the appearance 

of new resonance peaks. It also means that the results for the EC in DSS obtained is different from the 

case of bulk semiconductor [6]. 

Figure (2b) shows that the magnetic induction significant impact on locating the resonance peaks. 

It is so easy to explain. c

e

eB

m
   absent in the expression to identify resonance frequency of laser 

radiation mentioned above. Therefore, the change of magnetic field leads to change of resonance 

condition. In the case of phonon confinement, the EC has negative values when the magnetic field is 

strong.  

Figure 3 indicates the influence of laser amplitude on the EC. The bigger laser amplitude increases, 

the bigger EC gets. The EC increases fast when laser amplitude is greater than 4.105 Vm-1. Similar to 

the dependence of the EC on temperature, due to the confinement of optical phonon, the value of EC 

decreases in comparison with un-COP case. In the low laser amplitude condition (less than 2.105 Vm-1) 

the EC is almost unchanged and approaches to zero when the laser amplitude increases. Besides, the EC 



C.T.V. Ba et al. / VNU Journal of Science: Mathematics – Physics, Vol. 36, No. 3 (2020) 39-46 44 

has positive values with COP and even un-COP. Furthermore, when the magnetic field increases, the 

EC decreases. That is displayed explicitly by Figure (3b).  

 

(3a) 

 

(3b) 

Figure 3. The dependence of the EC on the laser amplitude. 

 

Figure 4. The dependence of the EC on the magnetic field. 

Figure 4 shows the EC plotted as a function of magnetic induction at different values of quantum 

number m. Due to the phonon confinement, the EC changes resonance peaks position.  The resonance 

peaks position is determined by condition:
  1'

2

p m

e

n n eE l
B m

e

     
 . For simply, 1eE l  can 
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be neglected ( 1 0eE l  ).  When optical phonons are confined, their energy and wave vector are 

quantized. The COP frequency is defined:    
22 2 /m o sv m L    . Each value of m determines a 

value of COP frequency. So, the increase of quantum number m affects resonant condition.  

4. Conclusions 

Based on the kinetic equation method, we have studied the influence of COP on the Ettingshausen 

effect in GaAs:Si/GaAs:Be DSS. Due to the remarkable contribution of COP and size effect, the 

theoretical results for Ettingshausen effect in DSS are different from the previous one [6]. The results 

are derived from the change of wave vector and energy spectrum of electrons in DSS in comparison 

with bulk semiconductor. Under the influence of phonon confinement effect, the Ettingshausen 

coefficient changes in magnitude, the number and position of resonance peaks in comparison with un-

COP case. Because of the increase of phonon confinement effect, the resonance condition in DSS 

changes and the EC decreases. The increase of magnetic field leads to the increase of the EC when 

temperature increases. It is contrary to the result obtained when investigating the dependence of the EC 

on the laser amplitude. We also get the results fitting to the un-COP case when the quantum number is 

set to zero. So far, the results obtained are new for Ettingshausen effects in DSS and contribute to the 

research and making new semiconductor materials. 
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