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Abstract: We present machine learning models for fast estimating atomic forces and energies. In 

our method, the total energy of a system is approximated as the summation of atomic energy which 

is the interaction energy with its surrounding chemical environment within a certain cutoff radius. 

Atomic energy is decomposed into two-body terms which are expressed as a linear combination of 

basis functions. For the force exerted on an atom, we employ a linear combination of a set of basis 

functions for representing pairwise force. We use least-square linear regression regularized by the 

l2-norm, known as Ridge regression, to estimate model parameters. We demonstrate that we can 

train linear model to accurately predict atomic forces and energies in comparison to density-

functional-theory (DFT) calculations for crystalline and amorphous silicon. The machine learning 

force model is then applied to calculate the phonon dispersion of crystalline silicon. The result shows 

reasonable agreement with DFT calculations.  
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1. Introduction 

The computation of the energies, especially the forces of a chemical system, play a central role in 

the computational design of matter and materials. The energies and forces can be obtained by performing 

electronic structure calculations such as those based on density functional theory (DFT) [1–3]. Although 
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DFT has become a standard method in the computer simulations of matter, it continues to remain 

computationally expensive. The energies and forces of a large system can also be approximated by using 

an empirical model with much lower computational cost. Typically, a potential energy surface (PES) is 

constructed as the sum of simple low-dimensional terms (structural elements) representing covalent 

bonds, angles, and dihedral angles [4]. These methods are efficient and are applied widely for simulating 

large biosystems, but they can hardly describe chemical reactions that involve the formation or 

dissociation of covalent bonds.  

In recent years, alternative methods, which learn the PES from a set of materials structures and the 

corresponding DFT energies, have been developed [5–11]. These methods employ machine learning 

algorithms to determine the functional relationship between the structure and energy of a material. 

Normally, to build the machine learning models the total energy of a material is decomposed into the 

sum of all energies of the constituent atoms determined by interactions among these atoms and with 

atoms in the surrounding chemical environment within a cutoff radius. 

Although atomic forces, which is a vector quantity, can be calculated by obtaining the gradient of 

the total energy, this approach would hardly be successful when the learned functional relationship 

between the material structure and energy is complicated, such as deep-learning models. Therefore, the 

machine learning models for representing the atomic forces are highly desired. In this work, we examine 

a linear representation for atomic energies on atomic forces. For the atomic forces, we develop linear 

models for the direct representation of atomic forces in terms of pairwise-force functions. 

2. Computational Methods 

2.1. Modeling Potential Energy Surface 

To model the potential energy surface, we assume that the total energy of a chemical system is the 

summation of effective atomic energy of the constituent atoms [9,10,12–15]: 𝐸 = ∑ 𝐸𝑖𝑖 , where 𝐸 is the 

total energy and 𝐸𝑖 is the effective energy measuring the contribution of atom 𝑖 to the total energy. The 

effective energy of atom 𝑖 can be represented based on its interactions with neighboring atoms within a 

cutoff radius, 𝑟𝑐. In this work, we only focus on the two-body interactions. In principle, we can extend 

the effective atomic energy to higher order.  

𝐸𝑖 =  ∑ 𝐸𝑖𝑗

𝑗

= ∑ ∑ 𝑐𝑘𝑏𝑘(𝑟𝑖𝑗, 𝑣𝑖 , 𝑣𝑗) = ∑ 𝑐𝑘 ∑ 𝑏𝑘(𝑟𝑖𝑗, 𝑣𝑖, 𝑣𝑗)

𝑗𝑘

= ∑ 𝑐𝑘𝑥𝑘

𝑘𝑘𝑗

 (1) 

where 𝑥𝑘  =  ∑ 𝑏𝑘(𝑟𝑖𝑗, 𝑣𝑖, 𝑣𝑗)𝑗 , 𝑏𝑘(𝑟𝑖𝑗, 𝑣𝑖 , 𝑣𝑗) are basis functions, 𝑐𝑘 are expansion coefficients, and 

𝑣𝑖 and 𝑣𝑖 are feature vectors encoding the information of atom 𝑖 and 𝑗, respectively. To enhance the 

nonlinearity representation, we also include the polynomial terms of two-body term up to order 𝑝:  

 

𝐸𝑖 =  ∑ 𝑐𝑘
(1)

𝑥𝑘

𝑘

+ ∑ 𝑐𝑘
(2)

𝑥𝑘
2

𝑘

… ∑ 𝑐𝑘
(𝑝)

𝑥𝑘
𝑝

𝑘

 (2) 

  In this work, we focus on silicon systems and examine the Gaussian and cosine basis function for 

representing their potential energy surfaces. Since the atomic information is identical for all silicon atom, 

we can remove 𝑣𝑖 and 𝑣𝑗 in Eq. 2. Eq. 2 can be reduced to more simple form:  

𝐸𝑖 =  ∑ 𝑐𝑘𝑏(𝑟𝑖𝑗)𝑘𝑘 . We use following forms: 𝑏𝑘(𝑟𝑖𝑗) = 𝑒𝜂𝑘 (𝑟−𝑟𝑘)2
𝑓𝑐(𝑟𝑖𝑗) and 𝑏𝑘(𝑟𝑖𝑗) =

cos(𝜅𝑘𝑟𝑖𝑗) 𝑓𝑐(𝑟𝑖𝑗) for Gaussian and cosine basis functions, respectively, where 𝜂𝑘, 𝑟𝑘, and 𝜅𝑘 are 
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parameters defined the basis functions, 𝑓𝑐(𝑟𝑖𝑗) is a smooth-cutoff function which ensures that the atomic 

energy varies smoothly at the cutoff radius: 

𝑓𝑐(𝑟𝑖𝑗) =  {
0.5 [𝑐𝑜𝑠 (

𝜋𝑟𝑖𝑗 

𝑟𝑐
) +  1]  𝑖𝑓 𝑟𝑖𝑗 < 𝑟𝑐

0 𝑖𝑓 𝑟𝑖𝑗 ≥ 𝑟𝑐

 (3) 

We determine the linear coefficient, 𝑐𝑘
(𝑝)

 by a linear regression for DFT Energies. We use least-

square linear regression regularized by the l2-norm, known as Ridge regression [9], to estimate model 

parameters.  

2.2. Modeling Atomic Force 

To model the force on an atom we only consider the interactions of its neighboring atoms within a 

cutoff radius. The force that acts on an atom is a superposition of all pairwise forces between the central 

atom and its neighboring atoms:  

𝑓𝑖 = ∑ 𝑓𝑖𝑗

𝑗

= ∑ 𝐹𝑖𝑗(𝑟𝑖𝑗 , 𝑣𝑖, 𝑣𝑗)
𝑟𝑖𝑗

𝑟𝑖𝑗
𝑗

𝑓𝑐(𝑟𝑖𝑗) (4) 

where 𝑓𝑖 is the force acting on atom i, 𝑓𝑖𝑗 is the force exerted on atom 𝑖 by atom 𝑗, 𝐹𝑖𝑗(𝑟𝑖𝑗, 𝑣𝑖, 𝑣𝑗)  is 

a pairwise-force function, and 𝑓𝑐(𝑟) is the smooth cutoff function. The pairwise-force function which 

depends the distance between atoms, 𝑟𝑖𝑗, and the intrinsic properties of atoms represented by feature 

vectors, 𝑣𝑖 and 𝑣𝑗.  The pairwise-force function measures the strength of the force atom j exerts on atom 

i. Each component of the atomic force can be expressed by following equation:  

𝑓𝑖𝛼 = ∑ 𝐹𝑖𝑗(𝑟𝑖𝑗, 𝑣𝑖 , 𝑣𝑗)
𝑟𝑖𝛼 − 𝑟𝑗𝛼

𝑟𝑖𝑗
𝑓𝑐(𝑟𝑖𝑗)

𝑗

 (5) 

where 𝑓𝑖𝛼 is the α component of 𝑓𝑖 where 𝛼 ∈  {𝑥, 𝑦, 𝑧}. We represent the pairwise-function by a 

linear combination of basis functions.  

𝐹(𝑟𝑖𝑗 , 𝑣𝑖, 𝑣𝑗) = ∑ 𝑐𝑘𝑏𝑘(𝑟𝑖𝑗, 𝑣𝑖, 𝑣𝑗)

𝑘

 (6) 

Combining Eq. 2 and Eq. 3, we can express the Cartesian force components as follows: 

𝑓𝑖𝛼 = ∑ 𝑐𝑘

𝑘

∑ 𝑏𝑘(𝑟𝑖𝑗, 𝑣𝑖, 𝑣𝑗)
𝑟𝑖𝛼 − 𝑟𝑗𝛼

𝑟𝑖𝑗
𝑓𝑐(𝑟𝑖𝑗)

𝑗

 (7) 

Therefore, one can determine the linear coefficient, 𝑐𝑘 by a linear regression for DFT forces, 𝑓𝑖𝛼. 

We also employ Ridge regression in order to estimate model parameters [9] and  investigate the Gaussian 

and cosine basis functions, as described in section 1, for representation of the pairwise-force. 

2.3. Data Preparation 

We examine our method to silicon system. We used a 2×2×2 Si supercell that includes 64 Si atoms 

as training data and a 3×3×3 Si supercell with 216 atoms as the test data for the larger system. The 

systems were relaxed by performing a molecular dynamics (MD) calculations at 2,000 K in the NPT 

ensemble by the Car–Parrinello method [3]. Then, they were equilibrated at 1,000 K in the NPT 

ensemble. The pressure was standard ambient atmospheric pressure (1.01325 bar). We collected 3,000 

structures in the equilibrated trajectories of the 2×2×2 cell training the data of the 3×3×3 cell as test 
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data. Additionally, we examined the applicability of our method to a large range of forces by adding 

uniform random displacement with a magnitude of 0.3Å to the coordinates of each atom in those 

structures equilibrated at 1,000 K. The energies and forces of the structures were calculated by using the 

PWSCF code [20, 21]. We employed the PBE exchange-correlation functional [22, 23] to process the 

exchange-correlation energy, plane wave basis set with the cutoff energy of 40 Ry, and ultrasoft-

pseudopotential [24] for approximating the interaction between the valence electrons and core electrons. 

A 3×3×3 Monkhorst–Pack grid of k-points was employed for the Brillouin-zone integrations of 2×2×2 

Si supercell, while a 2×2×2 grid was applied for 3×3×3 supercell. 

3. Results and Discussion 

3.1. Prediction of Total Energy 

We use the cutoff radius of 8 Å and investigate the dependence of the prediction of the potential 

energy surface on the number of basis functions. For the Gaussian functions, we use first use the 

functions with the center is the center atom, 𝑟𝑘 = 0.0. The number of Gaussian basis functions is defined 

by the parameter, 𝜂𝑚𝑎𝑥. The parameters 𝜅𝑘 ∈ {0.05, 0.10, … , 𝜅𝑚𝑎𝑥} are used for the cosine functions, 

and the number basis function is also determined by the parameter 𝜅𝑚𝑎𝑥.  

Table 1. The mean absolute error (MAE) in meV/atom for the test set derived from 2×2×2 supercell 

Basis 

Function 
#functions p=1 p=2 p=3 

Gaussian 

20 8.9 8.5 8.0 

40 8.4 8.3 7.9 

60 8.1 7.9 8.2 

Cosine 

20 31.6 28.7 31.1 

40 10.4 10.8 10.6 

60 9.8 9.3 10.2 

 

        We first examine our model for the potentials energy surface of 2×2×2 system. We divide the data 

set of 3000 structures into the training set of 2400 structures and the test set of 600 structures. The 

performance of models derived from Gaussian and cosine basis functions is shown in Table 1. It can be 

seen that for this system, the polynomial terms, as described in Eq. 3, do not significantly improve the 

accuracy of the prediction. And the Gaussian basis functions seem to yield better performance in 

presenting the two-body terms for the potential energy surface of silicon systems. 

We also extend the Gaussian basis functions with different centers: 𝑟𝑘 ∈ {0, 1, 2, . . ,7, 8} and 𝜂𝑘 ∈
{0.05, 0.10, … , 𝜂𝑚𝑎𝑥}. By using 𝜂𝑚𝑎𝑥  of 2.0, we can slightly improve the accuracy with MAE of 7.7 

meV/atom. Using these basis functions and 3000 2×2×2-structures as training set, we can well reproduce 

the DFT energy for 3×3×3 system with similar accuracy.  

3.2. Prediction of Atomic Forces 

We use the same procedure to specify the basis functions for the pairwise forces between silicon 

atoms. We also first study the 2×2×2 systems with 2400 structures for the training set and 600 structures 

for the test set. Fig. 1 illustrates the dependence of the root mean square error (RMSE) on the number 

of basis functions. One can see that it requires smaller number of Gaussian function than that of cosine 

functions for the prediction of atomic forces.  
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Fig. 1. The root mean square error (RMSE) estimated on the test set of the 2×2×2 supercell 

 as the function of the basis functions. 

Fig. 2 shows the comparison between machine-learning forces and DFT forces for the training set 

(red) and the test set (blue). We can clearly see the good agreement between our model and the DFT 

calculations. For the model using 60 Gaussian basis function, we can obtain the accuracy with RMSE 

of 0.11 eV/ Å, MAE of 0.08 eV/ Å, and R2 score of 0.99. 

 

Fig. 2. The comparison of machine-learning forces and DFT forces for the training set (red)  

and the test set (blue). 

 

Fig. 3. The pairwise force function: by Gaussian (green) and cosine (red) basis functions. 
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We examine the pairwise functions represented by cosine and Gaussian functions, and the results 

are shown in Fig. 3. The cosine and Gaussian representations show a good agreement for approximating 

the pairwise function. It is observed that there might exist the attraction between Si atoms in the range 

of 2.3-7.0 Å. The interaction between Si atoms converges to zero at long distances. Interestingly, the 

interaction vanishes at 2.3 Å and 3.3 Å, which are corresponding to the first and second nearest 

neighbors in the crystalline silicon. The results imply that we can learn for the hidden knowledge of the 

pairwise interaction of Si atoms, which is not available in first-principles calculations. 

We apply the our model to the calculation of phonon dispersion for Si with a 2×2×2 supercell. The 

phonon dispersions were calculated by using the supercell approach [16] implemented in Phonopy code 

[17]. Fig. 4, which shows the phonon dispersion for diamond Si using our machine learning model using 

60 Gaussian and cosine basis functions, and DFT calculations, shows that the phonon dispersions 

obtained with these two methods are in good agreement. The slight difference indicates the limit of our 

method with respect to the prediction of small forces. 

 

 

Fig. 4. The phonon band structure and density of state (DOS): by Gaussian (green)  

and cosine (red) basis function.  

We examined the transferability of our models trained by the 2×2×2 silicon system, by comparing 

the predicted forces and DFT forces of the 3×3×3 silicon system. A test set with 300 structures of the 

3×3×3 supercell was used for the test. We obtained an the similar accuracy with RMSE of 0.11 eV/Å 

and MAE of 0.08 eV/Å for the 3×3×3 system. This result confirms that our model, which is trained with 

a small system, is transferable to large systems. 

4. Conclusion 

We report on a machine learning procedure for representing the potential energy surface and atomic 

forces from two-body terms. We can train linear models to accurately predict atomic forces and energies 

comparable to those obtained by density functional theory (DFT) calculations for crystalline and 

amorphous silicon. The machine learning force model is then applied to calculate the phonon dispersion 

of crystalline silicon. The result shows reasonable agreement with DFT calculations. We also show that 

the models learned from 2×2×2 data can extend to predict the potential energy surface and atomic force 

for 3×3×3 systems. 
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