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Abstract: Coronavirus disease 2019 (COVID-19) has been recognized as a global threat, and 

several studies are being conducted using various mathematical models to predict the probable 

evolution of this epidemic. The main objective of this study is to apply AutoRegressive 

Integrated Moving Average (ARIMA) model with the objective of monitoring and short-term 

forecasting the total confirmed new cases per day all over the world. The data are extracted 

from daily report of World Health Organization from 21st January 2020 to 16th March 2020. 

Akaike’s Information Criterion (AIC) and Ljung-Box test were used to evaluate the 

constructed models. To assess the validity of the proposed model, the Mean Absolute 

Percentage Error (MAPE) and Root Mean Square Error (RMSE) between the observed and 

fitted of COVID-19 total confirmed new cases was calculated. Finally, we applied “forecast” 

package in R software and the fitted ARIMA model to predict the infections of COVID-19. 

We found that the ARIMA (1, 2, 1) model was able to describe and predict the 

epidemiological trend of the disease of COVID-19. The MAPE and RMSE for the training set 

and validation set respectively, which we found was reasonable for use in the forecast. 

Furthermore, the model also provided forecast total confirmed new cases for the following 

days. ARIMA model applied to COVID-19 confirmed cases data are an important tool for 

COVID-19 surveillance all over the world. This study shows that accurate forecasting of the 

COVID-19 trend is possible using an ARIMA model. Unless strict infection management and 

control are taken, our findings indicate the potential of COVID-19 to cause greater outbreak all 

over the world. 
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1. Introduction 

Coronaviruses (CoV) are a large family of viruses that cause illness ranging from the common 

cold to more severe diseases such as Middle East Respiratory Syndrome (MERS-CoV) and Severe 

Acute Respiratory Syndrome (SARS-CoV). The 2019 novel coronavirus is  now named severe acute 

respiratory syndrome coronavirus-2 (SARS-CoV-2) while the disease associated with it is referred to 

as COVID-19. 

In response to the spread of COVID-19 all over the world, several countries have demonstrated 

the ability to reduce, or stop transmission of the COVID-19 virus. However, the impact of control 

efforts remains difficult to measure due to the inherent complexities of COVID-19 as a disease: 

multiple viral strains with identified genetic polymorphisms, complex disease manifestation, and 

multiple routes of transmission [1]. Infectious diseases have certain characteristic features that lead 

themselves to modeling, such as: speed of pathogen variation, accumulation of susceptible hosts, and 

environmental indices [2]. Thus, epidemic modeling and forecasting can be essential tools to prevent 

and control COVID-19. Recently, statistical methods including linear regression, correlation 

coefficients, back propagation artificial neural network model have been used for prediction of 

COVID-19 disease. The variation of COVID-19 diseases, which is influenced and constrained by 

diversified factors, is characterized by tendency and randomicity. These statistical tools are 

inappropriate for analyzing the randomicity of COVID-19. Autoregressive integrated moving average 

(ARIMA) models, which take into account changing trends, periodic changes, and random 

disturbances in time series, are very useful in modeling the temporal dependence structure of a time 

series. In epidemiology, ARIMA models have been successfully applied to predict the incidence of 

infectious diseases, such as influenza mortality [3], malaria incidence [4], as well as other infectious 

diseases [5,6]. This study aimed to develop a univariate time series model for the COVID-19 disease; 

specifically, a stochastic ARIMA model, for short-term forecasting of total confirmed new cases of 

COVID-19 infections for the following days. 

Besides mathematical, software tools today also play an important role in forecasting. There are 

many software tools for highly effective data analysis such as SPSS, Eviews, Python, etc. In this 

study, we use R statistical software to analyze the COVID-19 data. The advantages of R programming 

are open source programming language, providing exemplary support for data organization, package 

arrays, quality plotting and graphing, highly compatible, platform independent reporting and machine 

learning activity. 

2. Methods 

The data are extracted from daily report of World Health Organization from 21st January 2020 to 

16th March 2020 (https://www.who.int). All COVID-19 cases were initially diagnosed by clinical 

symptoms. In all the world, COVID-19 is a notifiable disease and hospital physicians must report 

every case of COVID-19 to the national health authority. Later report daily  COVID-19 case totals for 

World Health Organization with surveillance purposes. Due to mandatory reporting, it is believed that 

the degree of compliance in disease notification over the study period was consistent. 

We used the Box-Jenkins approach to ARIMA(p, d, q) modeling of time series [7-10]. This model 

building process is designed to take advantage of associations in the sequentially lagged relationships 

that usually exist in periodically collected data. The following were the parameters selected when 
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fitting the ARIMA model: p, the order of autoregression; d, the degree of difference; q, the order of 

moving average. 

The daily data used in this study did not show seasonal pattern, so the series was differenced at the 

non-seasonal level to induce stationarity. AutoCorrelation Function (ACF) graph and Partial 

AutoCorrelation Function (PACF) graph were used to identify the order of Moving Average (MA) and 

AutoRegressive (AR) terms included in the ARIMA model. Estimates of the model is parameters were 

obtained by the conditional least squares method. Diagnostic checking including residual analysis and 

the Akaike Information Criterion (AIC) was used to compare the goodness of fit among ARIMA 

models. 

𝐴𝐼𝐶 =  −2 log(𝐿) + 2(𝑝 + 𝑞 + 𝑘 + 1), 

where 𝐿 is the likelihood of the data, 𝑘 = 1 if 𝑐 ≠ 0 and 𝑘 = 0 if 𝑐 = 0 [9]. The Ljung-Box test was 

used to measure the ACF of the residuals. In addition, we used the Mean Absolute Percentage Error 

(MAPE), Root Mean Squared Error (RMSE) and fitting effect diagram to assess forecast accuracy [7-

10]. 
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where 𝑥𝑡 and 𝑥𝑡 denote observed and fitted values at time point 𝑡. The MAPE and RMSE values were 

calculated based on observed values and fitted values from 21st January 2020 to 14th March 2020. A 

lower AIC, MAPE and RMSE values indicates a better fit of the data. Finally, the fitted ARIMA 

model was used for forecasting total confirmed new cases of COVID-19 for the next five days. 

3. Results 

Our data have a daily series with 56 observations (56 days) and the goal is to forecast the next five 

days. The corresponding command packages and libraries for model prediction are forecast, readxl, 

tseries, TSstudio and ggplot2. Let us load the total confirmed new cases series from file newcase.xlsx. 

 

 

Figure 1. Total confirmed new cases of COVID-19 from 21st January 2020 to 16th March 2020. 
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Let us plot the series with the autoplot function and review the main characteristics of the series. 

We attain the output as shown in Figure 1. 

 
datats <- ts(newcase) 

autoplot(datats) + ylab("Total confirmed new cases of COVID-19") + 

xlab("From 21/1/2020 to 16/3/2020") 
 

Observe the picture above, the series is trending up, so we can already conclude that the series is 

not stationary and some differencing of the series is required. We would use the first 56 observations 

for training and test the performance using the last 2 observations. Creating partitions in R can be done 

manually with the ts_split function from the stats package. For instance, let us split the datats series 

into partitions: 

 
x<- ts_split(datats, sample.out = 2) 

train <- x$train 

test <- x$test 
 

Before we start the training process of the ARIMA model, we will conduct diagnostics in regards 

to the series correlation with the ACF and PACF functions. Since we are interested in viewing the 

relationship of the series with its lags, we will increase the number of lags to calculate. 

 

par(mfrow=c(1,2)) 

acf (ts (train), main="ACF For Time Series",col="blue", lwd =4) 

pacf (ts (train), main="PACF For Time Series",col="coral", lwd =4) 
 

 

Figure 2. ACF and PACF plot of total confirmed new cases of COVID-19. 

As well as looking at the time plot of the data, the ACF plot is also useful for identifying non-

stationary time series. For a stationary time series, the ACF will drop to zero relatively quickly, while 

the ACF of non-stationary data decreases slowly. Therefore, differencing can help stabilize the mean 

of a time series by removing changes in the level of a time series, and therefore eliminating (or 

reducing) trend. Consequently, we will take a first difference of the data. The first differenced data are 

shown in Figure 3.  
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diff1 <- diff(train, differences = 1) 

par(mfrow=c(1,2)) 

acf(ts(diff1),main="ACF For First Order Difference",col="green", 

lwd = 4) 

pacf(ts(diff1),main="PACF For First Order Difference", 

col="red",lwd = 4) 

 

 

Figure 3. ACF and PACF plot for first order differencing total confirmed new cases of COVID-19. 

Observing Figure 3, the time series look stationary. However, we will check stationary by using 

ADF (Augmented Dickey-Fuller) test. The ADF test is a formal statistical test done to ensure 

stationarity. In ARIMA modeling using R the univariate data is converted into time series data format. 

The graph follows an overall upward trend with some outliers in terms of sudden lower values. The 

ADF is unit root test for stationarity [7]. 

 
adf.test (diff1, alternative = "stationary") 

 

## Augmented Dickey-Fuller Test 

## data:  diff1 

## Dickey-Fuller = -0.85086, Lag order = 3, p-value = 0.9518 

## alternative hypothesis: stationary 

 

After taking the first order differencing, the p-value is 0.9518 and is more than 0.05. Therefore, the 

first order differencing is non-stationary. We necessary to difference the data a second time to obtain a 

stationary series. We then have the output as shown in Figure 4: 
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Figure 4. ACF and PACF plot for second order differenced total confirmed new cases of COVID-19. 

diff2 <- diff(train, differences = 2) 

par(mfrow=c(1,2)) 

acf(ts(diff2),main="ACF For Second Order Difference", col="green", 

lwd = 4) 

pacf(ts(diff2),main="PACF For Second Order Difference", 

col="red",lwd = 4) 

 

We will check stationary of second-order differencing data by using ADF test. 
 
adf.test (diff2, alternative = "stationary") 

 

## Augmented Dickey-Fuller Test 

## data:  diff2 

## Dickey-Fuller = -5.2815, Lag order = 3, p-value = 0.01 

## alternative hypothesis: stationary 
autoplot(diff2) + ylab("diff2") + xlab("Time") 
 

Since the p-value after differencing is less than 0.05 the null hypothesis is rejected and the data 

does not have a unit root and is stationary. The second order differenced data are shown in Figure 5. 

 

 
 

Figure 5. Time series after taking the second order differencing 
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Our aim now is to find an appropriate ARIMA model based on the ACF and PACF plot of Figure 

4.  The significant spike at lag 1 and lag 3 in the ACF suggests AR(2) component, and the significant 

spike at lag 2 in the ACF suggests MA(1) component. Consequently, we begin with an ARIMA(2, 2, 

1) [AIC = 806.57]. The PACF shown in Figure 4 is suggestive of an AR(1) model. So an initial 

candidate model form PACF plot is an ARIMA (0, 2, 1) [AIC = 808.76]. Base on the AIC smallest, we 

chose an ARIMA(2, 2, 1) model to fit along with some variations on it, compute the AIC values and 

test set evaluation shown in the Table 1. The best is the ARIMA(1, 2, 1) model (i.e., it has the smallest 

AIC, MAPE and RMSE values). 

Next step, we check the residuals from ARIMA(1, 2, 1) model by plotting the ACF of the 

residuals. 

 
best.md <- Arima(train, order = c(1,2,1)) 

checkresiduals(best.md) 

 

Table 1. AIC, MAPE and RMSE values for various ARIMA models applied 

 for total confirmed new cases of COVID-19 

 

Models AIC MAPE RMSE 

ARIMA(2,2,1) 806.57 22.40385 508.6987 

ARIMA(3,2,1) 808.50 22.08726 508.2025 

ARIMA(3,2,2) 809.75 22.56819 511.7869 

ARIMA(2,2,2) 808.54 22.27889 508.4950 

ARIMA(1,2,1) 805.15 21.66519 508.0969 

ARIMA(1,2,0) 806.65 24.24934 530.3712 

 

 

Figure 6. Residuals from the ARIMA(1, 2, 1)  model applied to total confirmed new cases of COVID-19. 
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The output of the Ljung-Box test suggested that the residuals of the model are white noise: 

 

## Ljung-Box test 

 

## data:  Residuals from ARIMA(1,2,1) 

## Q* = 4.644, df = 8, p-value = 0.7949 

## Model df: 2.   Total lags used: 10 

 

By looking at the preceding residuals plot, you can see that the residuals are white noise and 

normally distributed. Furthermore, the Ljung-Box test confirms that there is no autocorrelation left on 

the residuals with a p-value of 0.7949, we cannot reject the null hypothesis that the residuals are white 

noise. Thus, we now have a seasonal ARIMA model that passes the required checks and is ready for 

forecasting. 

Table 2. Summary of ARIMA(1, 2, 1) 

 

ARIMA(1,2,1) 

ARIMA AR(1) MA(1) 

Coefficients -0.4715 -0.4471 
s.e. 0.1816 0.2125 

 

Let us use the best.md trained model to forecast the corresponding observations of the testing set: 
 

test_fc <- forecast(best.md, h = 2) 

 
Table 3. Assess performances of ARIMA(1, 2, 1) model 

 
Date Forecast Actual Lo 80 Hi 80 Lo 95 Hi 95 FE 

15/3/2020 10882.19 10982 10200.43 11563.95 9839.532 11924.85 0.9% 

16/3/2020 12541.07 13903 11536.90 13545.24 11005.325 14076.82 9.79% 

 

According to Table 3, we see the predicted values had given by the reference model at two days 

are in the confident interval with respect to level 80% and 95%. This shows that the model could be 

fitting and statistical significance. In particular, actual values are near the upper bound of the 95% 

confidence interval. 

Now, we will use the test_forecast function to get a more intuitive view of the model is 

performance on the training and testing partitions: 

 
test_forecast(datats,forecast.obj = test_fc,test = test) 

 

We get the following output: 

 



N.Q. Duong et al. / VNU Journal of Science: Mathematics – Physics, Vol. 36, No. 4 (2020) 46-57 54 

 
 

Figure 7. Datats - Actual versus Forecasted and Fitted. 

Now that we have satisfied the preceding conditions, we can move on to the last step of the 

forecasting process and generate the final forecast with the selected model. We will start by retraining 

the selected model on all the series: 

 
model <- Arima(datats, order = c(1,2,1)) 

 

The main goal of the forecasting process is to minimize the level of uncertainty around the future 

values of the series. Although we cannot completely eliminate this uncertainty, we can quantify it and 

provide some range around the point estimate of the forecast. The confidence interval is a statistical 

approximation method that is used to express the range of possible values that contain the true value 

with some degree of confidence (or probability). Let us use the forecast function to forecast the next 

five days of the datats series. 

 
forecast_virus <- forecast(model, h = 5) 

 

The output is as Table 4: 

Table 4. Assess performances of ARIMA(1,2,1) model 

 

Date Forecast Lo 80 Hi 80 Lo 95 Hi 95 

17/3/2020 15491.89 14791.70 16192.08 14421.04 16562.73 

18/3/2020 17868.12 16820.01 18916.23 16265.17 19471.07 

19/3/2020 19778.99 18165.76 21392.22 17311.77 22246.22 

20/3/2020 21964.92 19791.75 24138.08 18641.34 25288.49 

21/3/2020 23988.27 21157.58 26818.96 19659.10 28317.44 
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Figure 8. Forecasts of the total confirmed new cases of COVID-19 using the ARIMA(1, 2, 1)  model. 

According to the results in the Figure 7, the confirmed new cases of COVID-19 tends to increase 

rapidly in the next 5 days. The prediction model will help the government and medical workforce to be 

prepared for the upcoming situations and have more readiness in healthcare systems. 

4. Discussion 

Time series analysis of surveillance data on spread of various infections is very helpful in 

developing hypotheses to explain and anticipate the dynamics of the observed phenomena and 

subsequently in the establishment of a quality control system and reallocation of resources. ARIMA 

model is one of the most widely used time-series forecasting techniques because of its structured 

modeling basis and acceptable forecasting performance. In this paper, we applied an ARIMA(p, d, q) 

model to analyze the surveillance data of COVID-19 infection all over the world. Disease monitoring 

by public health department entails ongoing data collecting, processing, and updating. However, the 

World Health Organization is the appropriate level of organization for the implementation of an 

ARIMA predictive model, because reported data is continually received and updated. We found that 

model predictions are further improved by the assured availability of the Health Department data. In 

this study, we have obtained an ARIMA model that closely fits for the spread of COVID-19 all over 

the world. The autoregression and moving average parameters of our model imply the number of 

infection COVID-19 in a day can be estimated by the residual occurring one day prior. According to 

the results above, the conducted model is reliable with a high validity. Once a satisfactory model has 

been obtained, it can be used to forecast expected numbers of cases for a given number of future time 

intervals.  The forecast results suggest that the total confirmed new cases of COVID-19 all over the 

world will experience a strong growth in the next five days (17th March 2020 to 21st March 2020). 

Therefore, knowledge of COVID-19 forecasts is necessary to prompt countries to strengthen 
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surveillance systems and give appropriate solutions. Moreover, the fitted ARIMA(1, 2, 1) model can 

be used to predict the total number of COVID-19 infection for the following days. 

Several studies have used ARIMA model to fit and predict changing trends in infectious disease. 

L.LIU et al applied an ARIMA(1, 0, 1)×(0, 1, 0)12 model to predict the incidence of hand, foot and 

mouth disease in Sichuan province, China [11] and found that ARIMA models were useful tools for 

monitoring hand, foot and mouth incidence. Earnest et al indicated that ARIMA models provided 

useful tools for administrators and clinicians in planning for real-time bed capacity during infectious 

diseases outbreaks such as SARS [12]. Li XJ et al have applied an ARIMA model to monthly 

incidence of HFRS (Hemorrhagic Fever with Renal Syndrome) in Linyi City, China to predict HFRS 

incidence, and found that the ARIMA model could be used to predict HFRS incidence with high 

predictive precision in the short-term [13]. In the present study, we further confirmed the consensus 

that ARIMA model is a useful tool in monitoring and predicting changing trends in infectious 

diseases. 

To the best of our knowledge, this is the first study to apply ARIMA model to fit the COVID-19 

incidence in all the world with as many as 56 observations at day level. Some previous study [14, 15] 

used ARIMA model to fit and forecast COVID-19 incidence of a region, but the problem that the 

number of observations was not enough, which led to the instability of their forecast results. In order 

to conduct a stable and effective ARIMA model, we have to collect at least 50 observations [7]. Thus, 

parameter estimates of the fitted model would be more robust. The longer the series, the better; 

however, the series should not extend so far into the past as to include periods during which a different 

case definition was applied or in which any other reporting artifact resulted in a mean number of cases 

per interval that differs from the mean of recent intervals. As mentioned above, for adequate ARIMA 

modeling, a time series should be stationary with respect to mean and variance. If the mean increases 

or decreases over time, or if the variance does, the series may need to be transformed to make it 

stationary, before being modeled. Otherwise, the prediction effect of the model will be poor. 

In order to improve the model, updating the forecasts is very important. A model without seasonal 

terms will need to be updated frequently. Confidence intervals that widen rapidly as time increase 

from the starting point of the forecasts also indicate a model that needs frequent updating. Generally 

speaking, there are two ways to implement the updating. The model can be reapplied to the original 

series with extra observations added at the end to give forecasts based on a later starting point. 

Alternatively, a new model can be fitted to the longer series. This is probably preferable, since fitting a 

model is quick, especially when the old model is used as a guide, and it makes better use of the 

additional observations. 

In the last part, we want to emphasize and explain of the the large number of cases in China on 

February 17th: You will notice a dramatic increase in the number of confirmed cases on 17th February 

2020. As the WHO notes in its Situation Report 27, this is the result of a change in reporting 

methodology to include all confirmed cases including both laboratory-confirmed as previously 

reported, and those reported as clinically diagnosed. This change in methodology only affected figures 

in the Hubei province in China, but due to the large number of cases in this region it had a significant 

impact on global figures too. The possible biases in disease reporting and potential underreporting of 

COVID-19 cases might influence the precision of our analysis. 

5. Conclusion 

There is an urgent need for monitoring and predicting COVID-19 incidence to reduce the 

substantial morbidity and mortality caused by this disease [16]. ARIMA models applied to historical 
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COVID-19 infection data are an important tool for COVID-19 surveillance. Accurate forecasting the 

number of infections of COVID-19 is possible. Our modeling approach can be used to monitor and 

predict the total confirmed new cases of COVID-19  infection all over the world for the following 

days. The ARIMA model could be used to optimize COVID-19 prevention by providing estimates on 

COVID-19 infection trends all over the world. 
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