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Abstract: By means of Cornwall-Jackiw-Tomboulis (CJT) effective action approach, the 

condensate density of a dilute Bose gas is investigated in the canonical ensemble. Our results show 

that the condensate density is proportional to a half-integer power law of the s-wave scattering length 

and distance between two plates. Apart from that, these quantities also depend on the particle number 

and area of each plate. 

 Keywords: Condensate density, dilute Bose gas, improved Hatree-Fock approximation, canonical 

ensemble.  

1. Introduction  

It is well-known that a number of atoms of a Bose gas will be condensed when the system is cooled 

to the critical temperature [1] and the Bose-Einstein condensate is formed. The more an atomic number 

is condensed, the lower the temperature is, therefore all of the atoms are in the same quantum state at 

the absolute zero temperature. At zero temperature, the wave function of the ground sate of the 

condensate is the solution of Gross-Pitaevskii (GP) equation [2, 3] and condensate density is defined as 

the square of the wave function. Within the framework of the GP theory, the condensate density has 

been studied in many different approximations, such as, linearized order parameter [4], parameterized 

for the weak and strong separations [5], parameterized order parameter [6], the double parabola 

approximation [7] and so on. 
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In the GP theory, also called mean field theory, the quantum fluctuations are neglected. However, 

the fluctuations always exist even at absolute zero temperature and are called quantum fluctuations [8, 

9]. At zero temperature, they rise from the Heisenberg uncertain principal. To calculate these quantum 

fluctuations, Bogoliubov transformation was proposed [10], in which the dispersion relation and density 

of quantum fluctuations were found. Nevertheless, these calculations are very complicate.  

Another method to investigate the Bose gas, including the quantum fluctuations is the Cornwall-

Jackiw-Tomboulis (CJT) effective action approach [11]. Recently, this method has been widely 

employed to study the Casimir effect in Bose gas(es) [12, 13] and condensate density [14] in improved 

Hartree-Fock (IHF) approximation. Furthermore, these works were done in the grand canonical 

ensemble [15]. In this paper, the CJT effective action approach is invoked in studying of the condensate 

density in the canonical ensemble.  

2. Condensate Density in the Improved Hartree-Fock Approximation 

Let us start by considering a Bose gas described by the Lagrangian [9],  
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in which  is the reduced Planck constant, the atomic mass and chemical potential are denoted by 

m  and ,  respectively. In general case, the field operator ( , )r t  depends on both the coordinate and 

time. The strength of interaction between the atoms is featured by the coupling constant ,g  which relates 

to the s-wave scattering length sa  in form  
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and 0g   for repulsive interaction.  

Let 0  be the expectation value of the field operator, in the tree-approximation the GP potential is 

read off from Eq. (1) 
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Without loss of generality, here and hereafter we consider the system without the external field so 

that 0  is real and it plays the role of the order parameter. Minimizing this potential with respect to the 

order parameter one arrives at the gap equation 
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and in the broken phase the order parameter has the form 

                                                                    
2

0 .
g


    (4) 

In momentum space, the inversion propagator in the tree-approximation has the form 
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where k  is the wave vector and n  is the Matsubara frequency, for boson, which is defined as 

2 / ,n Bn k T      with Bk  being Boltzmann constant and T absolute temperature. The 

Bogoliubov dispersion relation can be attained by requiring the determinant of (5) vanishes [16], 
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     From Eqs. (5) and (6) we have 
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It is obvious that there is the Goldstone boson.  

In order to investigate in Hartree-Fock (HF) approximation, i.e.  take into account these fluctuations, 

the field operator need to expand in terms of two real fields 1 2,   associated with the fluctuations [17], 
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Plugging (8) into (1) one gets the interaction Lagrangian in HF approximation 
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The effective potential can be read-off from (9) 
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where the notation 
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is used and ( )D k  is the propagator in this approximation. The momentum integrals aaP will be 

explained later.  In our previous work [12, 14], the CJT effective potential was proved that it violates 

the Goldstone theorem, i.e. it does not lead to the Goldstone boson. This fact is avoidable if the method 

proposed by Ivanov et. al. [18] is invoked. To do so, an extra term 
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need be added into the CJT effective (10) and therefore a new CJT effective potential is obtained  
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Minimizing the CJT effective potential (12) with respect to the order parameter one has the gap 

equation 
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and, in the same manner, minimizing the CJT effective potential (12) with respect to the elements 

of the propagator leads to the Schwinger–Dyson (SD) equation  
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In which the self-energies are expressed in terms of the momentum integrals 
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and M  is the effective mass. Combining Eqs. (12), (13) and (14), the inversion propagator in this 

approximation can be derived 
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Similar to (6), the Bogoluibov dispersion relation associated with (16) is 
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It is clear that the Goldstone theorem is valid by appearing the Goldstone boson corresponding to 

the dispersion relation (17). This is the reason why it is called the improved Hartree-Fock approximation. 

For all above calculations, note that, for the notational simplicity, the same symbols will be used again 

from (12) to (16) to denote the corresponding quantities, although their expressions are different from 

those given in Eqs. (10) and (11). The momentum integrals in the IHF approximation are defined as 

(18) 

 

 

Based on Eqs. (16) and (18) one has relations 
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for the momentum integrals at zero temperature. 

We next investigate the condensate density in the IHF approximation. At first, we note that the 

pressure is defined as the negative of the CJT effective potential at the minimum, i.e. satisfying the gap 

and SD equations 

11 11 22 2( ),  ( ).P PD k D k
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The condensate density can be derived from the pressure  
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Combining Eqs. (12), (16), (20) and (21), the condensate density is expressed in terms of the order 

parameter and the momentum integrals [14], 
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In order to simplify notations, we use the coherent healing length 
0/ 2mgn   with 0n  being 

density in bulk and henceforth several dimensionless quantities are introduced: the reduced order 

parameter 
0 0 0/ n  , wave vector k   and mass effective 

0 ./M M gn  The momentum 

integrals (19) reduce 
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3. Density condensate of a dilute Bose gas confined between two parallel plates 

In this Section, the effect from the compaction in one-direction, say 0z, on the density condensate 

of a dilute Bose gas is studied. The Bose gas is confined between two parallel plates at distance  and 

perpendicular to 0z. Owing to this compaction of space, the wave vector can be decomposed 

                                                                                                                            

(24) 

in which , jk k
 are perpendicular and parallel to 0z, respectively. In dimensionless form, Eq. (24) 

becomes 
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To proceed further, the periodic boundary condition is applied at the plates, the parallel component 

of the dimensionless wave vector is quantized as 
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where the dimensionless distance / .L   Due to (25) and (26), the momentum integrals in Eq. 

(23) become 
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It is worth noting that we are considering in the canonical ensemble, in which our system is not 

connected to any particle reservoir. As a consequence, particle number is fixed and roughly speaking 

2 2 2 ,jkk k 
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with A being the area of the plate. The integration over the wave vector in (27) is ultraviolet 

divergence and, at the same time, the sum does not converge. This difference can be removed by using 

a momentum cut-off [12] and Euler-Maclaurin formula [19]. Keeping in mind Eq. (28) one arrives at 
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For a boson system, the chemical potential at zero temperature [17], 
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In case of a dilute Bose gas, the second term in right hand side of Eq. (30) can be ignored [14]. 

Combining Eqs. (13)-(30), the gap and SD equations can be rewritten as 
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The solution for Eqs. (31) has the form 
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Plugging (32) and (33) into (29) and then (22), the condensate density is read 
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Let (32) back to the dimensional form one has the condensate density without the quantum 

fluctuations 
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Eqs. (34) and (35) show many significant differences compared with those in the grand canonical 

[14]. In grand canonical, the condensate density only depends on gas parameter and the distance between 

two plates, whereas in canonical ensemble, apart from the gas parameter and the distance, the condensate 

density is also dependent of the plate geometry, namely, the number of particles N and area A of the 

each plate. 

To illustrate for the above analytical calculations, we do numerical computations for a dilute Bose 

gas formed by sodium 23 (Na 23) [20] with  22,9897m u (where 
271.6605387 gk3 10u   is 

atomic mass unit). The total particle number 
505 1 ,N    plate area 

6 210 mA  [21]. Figure 1 shows 
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the evolution of density condensate as a function of the distance between two plates at 019.1sa a
10

0 9( 0.52 10 ma   is Borh radius). The blue and red lines correspond to cn  and 0.n  It is clear that 

the condensate density decays fast as the distance between two plates increases and it approaches to zero 

at large distance. The condensate density is also divergent when the distance tends to zero. This fact is 

the same in comparison with the one in the grand canonical ensemble. 

 

Figure 1. The evolution of the density condensate versus distance between two plates for Na 23 at 
019.1 .sa a  

 

Figure 2. The density of quantum fluctuations as a function of the scattering  

length sa  at the distance 
08000 .a  



N.V. Thu. / VNU Journal of Science: Mathematics – Physics, Vol. 36, No. 4 (2020) 84-92 91 

Moreover, one important thing is easily seen in Figure 1 is the difference between cn  and 0.n  This 

difference is caused by the quantum fluctuations, which can be read of from Eq. (22), 
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Substituting (33) into (29) and then (36) one has 
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Eq. (37) points out that the density of quantum fluctuations is proportional to square root of the 

scattering length and it decays as a minus half-integer power law of the distance between two plates. 

This is a very interesting property in compared with the one in the grand canonical ensemble. Figure 2 

depicts the quantum fluctuations as a function of the scattering length, which is controlled by the 

Feshbach resonance [22]. It is shown that the density of quantum fluctuations vanishes as the scattering 

length tends to zero. It confirms again that the quantum fluctuations in Bose gas are caused by the 

interaction between atoms.  

4. Conclusion  

In foregoing sections the condensate density has been investigated by using CJT effective action 

approach in canonical ensemble. Our main results are in order 

- The distance dependence: both condensate density and density of the quantum fluctuations strongly 

depend on the distance between two plates. However, there are several remarkable differences in 

compared with those in the grand canonical ensemble. These quantities proportional to the negative half-

integer power law of the distance instead of the integer one in the grand canonical ensemble. As the 

distance is large enough, the condensate density and density of the quantum fluctuations tend to zero 

whereas they accost the nonzero in the grand canonical ensemble. This fact is understandable by noting 

that the particle number is kept constant in the canonical ensemble. 

- The scattering length dependence: this property is the same for both grand canonical ensemble and 

the canonical ensemble. In both ensembles, these quantities are proportional to square root of the 

scattering length. This fact leads to the vanishing of these quantities in an ideal Bose gas. 

Besides, a common feature is shown is that the condensate density and density of quantum 

fluctuations in the canonical ensemble depend on the particle number and area of the plate. It is 

interesting to extend these results to consider static properties of the Bose gas, such as, the pressure. 
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