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Abstract: Given any pair of positive integers (n, k) and any nontrivial finite group G, we show that 

there exists a ring R of type (n, k) such that R is strongly graded by G and the identity component 

Re has Invariant Basis Number. Moreover, for another pair of positive integers (n', k') with n ≤ n' 

and k | k', it is proved that there exists a ring R of type (n, k) such that R is strongly graded by G and 

Re has type (n', k'). These results were mentioned in [G. Abrams, Invariant basis number and types 

for strongly graded rings, J. Algebra 237 (2001) 32-37] without proofs.  

 Keywords: Strongly graded ring, Invariant Basis Number, type. 

1. Introduction  

In the study of abstract algebra, most of the rings that one first encounters are rings with Invariant 

Basis Number property. This class of rings includes all nonzero commutative rings and (left) Noetherian 

rings. A unital ring R  is said to have Invariant Basis Number (IBN) if any two bases of any free left R

-module have the same cardinality. Since this condition always holds for free modules with infinite 

bases (see, e.g., [1, Corollary 1.2]), the definition is equivalent to saying that for any pair of positive 

integers m  and n , 
m n

R R  as left R -modules only if m n . As a typical example of a ring without 

IBN, let V be an infinite dimensional vector space over a field K  and let ( )
K

R End V . Then 

 ( , ) ( , ) ( , ) ( , )
K K K K

R Hom V V Hom V V V Hom V V Hom V V R R        
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as left R -modules. As a result, the free left R -modules 
m

R  and 
n

R  are isomorphic for any positive 

integers ,m n .  

An R -homomorphism 
n m

R R  can be expressed by an m n  matrix A  with entries in R , that 

is, ( )
m n

A R


M . Thus the ring R  fails to have IBN if and only if there exist positive integers m n  

and matrices ( )
m n

A R


M , ( )
n m

B R


M  such that 
m

AB I  and 
n

BA I . This statement does not 

involve left nor right modules, so the IBN property is indeed a left-right symmetric condition. It also 

shows that if there is a unit-preserving ring homomorphism R R   and R  has IBN, then R  has IBN. 

If the ring R  does not have IBN, then there is a smallest positive integer n  for which 
n m

R R  as 

left R -modules with some integer m n . We choose m  minimal with this property for n  and write 

m n k   with 0k  ; then we say that R  has type ( , )n k . For example, the ring ( )
K

R End V  

considered above has type (1,1) . 

The type of a ring was studied by W. G. Leavitt in the seminal paper [2]. He showed that for any 

pair of positive integers ( , )n k , there exists a unital ring of type ( , )n k  [2, Theorem 8]. Also, the 

following important results were proved. 

Proposition 1.1. ([2, Theorem 2]) Let R  and R  be unital rings of type ( , )n k  and ( , )n k  , respectively. 

If there is a unit-preserving ring homomorphism R R  , then n n  and k k∣ . 

Proposition 1.2. ([2, Theorem 3]) Let R  and R  be unital rings of type ( , )n k  and ( , )n k  , respectively. 

Then R R  has type ( ( , ), ( , ))max n n lcm k k  . On the other hand, if R  and R  are IBN rings, then so 

is R R .  

Let G  be a multiplicative group with identity element e . Recall that a ring R  is G -graded if 

g

g G

R R


 , where each 
g

R  is an additive subgroup of R  and 
g h gh

R R R  for all ,g h G . The G -

graded ring R  is called strongly graded if 
g h gh

R R R  for all ,g h G . It is easy to see that the G -

graded ring R  is strongly graded if and only 11
R g g

R R   for any g G . 

For a G -graded ring R , the identity component 
e

R  is a ring and there is a unit-preserving injection 

e
R R . Hence if R  has IBN, then 

e
R  also has IBN by above observation. On the other hand, if the 

type of R  and 
e

R  is ( , )n k   and ( , )n k  respectively, then n n   and k k∣  by Proposition 1.1. 

In [3], the authors asked if R  is a G -strongly graded ring with G  a finite group, whether it is true 

that 
e

R  has IBN if and only if R  has IBN. This question was answered in the negative by G. Abrams 

in [4, Theorem A], where G  is the group 
2
. Moreover, [4, Theorem B] states that for any pairs of 

positive integers ( , )n k  and ( , )n k   with n n   and k k∣ , there exists a ring R  of type ( , )n k   such 

that R  is strongly graded by 
2
 and 

e
R  has type ( , )n k . Abrams also mentioned that "it is not hard to 

show that results analogous to Theorems A and B hold with any finite group G  taking the place of 
2
"

(see [4, page 36]). 

The purpose of this paper is to prove Abrams's above remark (see Theorems 3.1 and 3.4). While the 

construction of the ring R  is similar to that of [4], we apply a general method of [5, Theorem 2.10.1]  

to produce a strong G -grading on R . To deal with the IBN property and the type, we introduce the 
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notion of type of an object in an additive category, which is a generalisation of the corresponding concept 

for a ring. We show in Proposition 2.2 that how the IBN property or the type of an object V  is related 

to the monogenic monoid genenerated by the isoclass [ ]V . This enables us to obtain a number of useful 

consequences, among others, Corollary 2.3, which generalises [2, Theorem 1]. 

We need some more notions on graded modules (see [5] for a complete account on graded rings and 

modules). Let R  be a G -graded ring and M  be a left R -module. The module M  is called a graded 

R -module if 
g

g G

M M


 , where each 
g

M  is an additive subgroup of M  and 
h g hg

R M M  for all 

,h g G . A graded homomorphism between graded R -modules ,M N  is an R -homomorphism 

:f M N  such that ( )
g g

f M N  for all g G . For a graded R -module M , 

( ) ( )
R R h

h G

END M END M


  is a G -graded ring, where 

 ( ) { ( ) ( )  for all }
R h R g gh

END M f End M f M M g G   ∣ . 

The g -shifted graded R -module ( )M g  is defined to be ( ) ( )
h

h G

M g M g


 , where ( )
h gh

M g M .  We 

denote by R -Mod the category of left R -modules and by R -Gr the category of graded left R -modules 

with graded homomorphisms. 

Throughout this paper, we consider only rings with identity. 

2. The IBN and Types of Objects 

Let us start by extending [3, Definition 3.1] to non-IBN objects. 

Definition 2.1. Let A  be an additive category. An object V A  has IBN if for all positive integers m  

and n , 
n m

V V  implies n m . If a nonzero object V A  does not have IBN, then V  has type ( , )n k  

if n  is the smallest positive integer such that 
n m

V V  for some m n , and k  is the smallest positive 

integer such that 
n n k

V V


 . 

Thus, when RA -Mod and V R , considered as a left R -module, we obtain the usual definitions 

of IBN property and type for a ring.  

Next we point out the relationship between Definition 2.1 and the structure of monogenic 

semigroups (see [6, Section 1.2]). A monogenic semigroup (or a cyclic semigroup) is a semigroup 

generated by a single element. Let S  be an additive semigroup and a S . By definition, the monogenic 

subsemigroup of S  generated by a  is 

 { ,2 ,3 , },a a a a     

where ma a a a     ( m  summands). There are two possibilities for the structure of a  . If, 

whenever ma na  implies m n  for positive integers m  and n , then clearly a   is isomorphic to the 

additive semigroup 
*
 of positive integers. On the other hand, if ma na  for some m n , then the 

index of a   is the least positive integer n  such that na ma  for some m n , and the period of a   is 

the least positive integer k  such that ( )na n k a  . In this case, it is proved that 

 { ,2 , , , ( 1) , , ( 1) }a a a na n a n k a         
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and ma m a  for m m  if and only if ,m m n   and  modm m k . The key point here is the 

elements , ( 1) , , ( 1)na n a n k a     form a group; in particular, these elements are distinct by 

cancellation law. A monogenic semigroup with index n  and period k  may also be expressed in terms 

of semigroup presentation { ( ) }a na n k a ∣ , which is a free semigroup generated by a  subject to the 

relation ( )na n k a   (see [6, Section 1.6]). 

The above definitions can be carried over monoids (i.e., semigroups with identity) as well, so we 

may talk about monogenic monoids (where {0 , ,2 ,3 , }a a a a a     with 0a  equal the identity element). 

The following proposition is now clear from Definition 2.1 and the previous discussion. 

Proposition 2.2. Let A  be an additive category and let P  be a set of objects in A  such that P  is 

closed under finite direct sums (including the empty sum, which gives the zero object). Let S  be the 

abelian monoid of isomorphism classes of objects in P , where the class of AP  is denoted by [ ]A  

and the operation on S  is defined by 

 [ ] [ ] [ ].A B A B    

Then, for any object V P , we have: 

(i) V  has IBN if and only if the monogenic submonoid [ ]V   of S  is isomorphic to the additive monoid 

. 

(ii) V  has type ( , )n k  if and only if the monogenic submonoid [ ]V   of S  has index n  and period .k  

As a direct consequence of Proposition 2.2, we obtain the corollary below. This result generalises 

[2, Theorem 1], which was proved by arguments on bases of free modules and such arguments cannot 

apply to our more general definition. 

Corollary 2.3. Let A  and P  be as in Proposition 2.2. For a pair of positive integers ( , )n k , an 

equivalent condition for an object V P  to have type ( , )n k  is:  

         ,   mod .
m m

V V for m m if and only if m m n and m m k


       

Proof. Assume that we have the given condition. Then clearly 
n n k

V V


  and n  is the smallest positive 

integer such that 
n m

V V  for some m n . If 
n n h

V V


  for some 0 h k  , then we would have 

 modn n h k  , which is absurd. Hence the type of V  is ( , )n k . The converse follows from 

Proposition 2.2. □ 

The next proposition is an extension of [3, Proposition 3.3] to the case of non-IBN objects. By using 

Corollary 2.3, the proof is similar to that of [3, Proposition 3.3], so we will omit it. 

Proposition 2.4. Let A  be an additive category and let P  be a set of objects in A  which is closed 

under finite direct sums. Then V A  has IBN if and only if the ring ( )End V
A

 has IBN. Similarly, 

V P  has type ( , )n k  if and only if ( )End V
A

 has type ( , )n k . 

As an application of the above results, let R  be a (unital) ring and take RA -Mod, P  to be the 

set of all finitely generated projective left R -modules. We denote by ( )RV  the monoid of isomorphism 

classes (denoted by [ ]P ) of finitely generated projective left R -modules under operation given by direct 

sum. The monoid ( )RV  is conical, that is, if , ( )x y RV  and 0x y  , then 0x y  . Moreover, [ ]R  

is an order-unit in ( )RV . Recall that for a monoid S , an order-unit in S  is an element u S  such that 
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for each x S , there exist y S  and an integer 1n   such that x y nu  . By a result of Bergman [7, 

Theorem 6.2], any conical monoid with an order-unit appears as ( )RV  for some ring R . 

From Propositions 2.2 and 2.4 we obtain immediately: 

Corollary 2.5. Let R  be a ring and V  a finitely generated projective R -module. Let M  denote the 

submonoid generated by [ ]V  in the monoid ( )RV . Then we have: 

(i) V  has IBN if and only if ( )
R

End V  has IBN, if and only if M  is isomorphic to . 

(ii) V  has type ( , )n k  if and only if ( )
R

End V  has type ( , )n k , if and only if M  is a monogenic monoid 

with index n  and period k . 

Specialising Corollaries 2.5 and 2.3 to the case V R , we recover the following known result. 

Corollary 2.6. Let M  denote the submonoid generated by [ ]R  in the monoid ( )RV . Then we have: 

(i) R  has IBN if and only if M  is isomorphic to .  

(ii) R  has type ( , )n k  if and only if M  is a monogenic monoid with index n  and period k , if and only 

if  

    ,   mod .
m m

R R for m m m m n and m m k


        

3. Strongly Graded Rings of Given Types 

To construct a ring having IBN or having a particular type ( , )n k , one possible way is using 

Corollary 2.5. Specifically, we will construct a module V  of type ( , )n k  over some ring T  via its 

monoid realisation. The desired ring will be ( )
T

End V . To show that this ring is strongly graded by a 

given finite group G , we use [5, Theorem 2.10.1]. Let us first recall several related notions in loc. cit. 

Let A  be an abelian category and ,M N A . We say that N  weakly divides M  in A  if N  is 

isomorphic to a direct summand of a finite direct sum 
t

M  of copies of M . We say that ,M N  are 

weakly isomorphic in A , denoted by ~M N , if and only if they weakly divide each other in A . 

In particular, we consider RA -Gr for a G -graded ring R . A module M R -Gr is said to be 

weakly G -invariant if ~ ( )M M g  in R -Gr for all g G , where ( )M g  is the g -shifted of M . Then 

for a finite group G , [5, Theorem 2.10.1] states that the G -graded ring ( )
R

End M  is strongly graded if 

and only if M  is weakly G -invariant. Note that the finiteness condition imposed on G  implies that 

( ) ( )
R R

End M END M , thus ( )
R

End M  is a graded ring (see [5, Corollary 2.4.6]). 

We are now ready to state and prove the first main theorem of this section. 

Theorem 3.1. Let ( , )n k  be any pair of positive integers and G  be any nontrivial finite group. Then 

there exists a ring R  of type ( , )n k  such that R  is strongly graded by G  and 
e

R  has IBN. 

Proof. We follow the idea of [4, Theorem A]. Assume that | |G m . We consider the abelian monoid 

( , )S   (with identity 0 ) presented by generators 
1 2 1 2

{ , , , , , ,
m

x x x y y  , }
m

y  and relations 

 
1 2 1 2

( ) ( )( ),
m m

n x x x n k x x x                           (3.1)                                                       



N.Q. Loc / VNU Journal of Science: Mathematics – Physics, Vol. 37, No. 1 (2021) 60-67 

 

65 

 
1 1 2 2 2 3 1

, , , .
m m

x y x x y x x y x                  (3.2) 

Since the given relations do not have 0 as their right-hand or left-hand sides, the monoid S  is conical. 

Moreover, it is easy to verify that 
1

x  is an order-unit of S . Therefore, by [7, Theorem 6.2], there exists 

a ring T  such that the monoid ( )TV  is isomorphic to S . Let 
1 2 1 2
, , , , , , ,

m m
X X X Y Y Y   denote the 

finitely generated projective left T -modules corresponding to the monoid elements 

1 2 1 2
, , , , , , ,

m m
x x x y y y  , respectively. 

We set 
1 2 m

V X X X     and ( )
T

R End V . Then V  is a finitely generated projective T -

module, i.e., [ ] ( )V TV . The relation (3.1) shows that the submonoid generated by [ ]V  in ( )TV  is 

isomorphic to a monogenic monoid having presentation ( )v nv n k v   ∣ . By Corollary 2.5, both V  

and R  have type ( , )n k . 

Assume that 
2

{ , , , }
m

G e g g  . Let the ring T  be graded trivially by G , i.e., 
e

T T  and 0
g

T   

for all g e . The module V  is graded as follows: 

 
2

1 2
with , , , .

m
g e g g m

g G

V V V X V X V X


      

Clearly V T -Gr. The cyclic-type relations (3.2) imply that 
g

V  and 
h

V  are weakly isomorphic in 

T -Mod, for all ,g h G  (precisely, each of them is a direct summand of the other). As a result, V  is 

weakly G -invariant. Indeed, for a fixed g G , 
h

V  is a direct summand of ( )
h gh

V g V  for all ;h G  

thus V  is a direct summand of ( )V g  in T -Gr and vice versa. By [5, Theorem 2.10.1], the ring 

( )
T

R End V  is strongly G -graded, as desired. 

The identity component 
e

R  of 
,

( ) ( , )
T T g h

g h G

R End V Hom V V


     consists of homomorphisms f  

such that ( )
g g

f V V  for all g G . Hence 

 
1 2

( ) ( ) ( ) ( ).
e T g T T T m

g G

R End V End X End X End X


      

It follows from the construction and Corollary 2.5 that 
1 2
, , ,

m
X X X  all have IBN. Consequently, the 

rings 
1 2

( ), ( ), , ( )
T T T m

End X End X End X  have IBN. As a direct sum of IBN rings, the ring 
e

R  also has 

IBN, by Proposition 1.2. □ 

The following lemma is an obvious generalisation of an observation in [4]. 

Lemma 3.2. Let ( , )n k   be any pair of positive integers and G  be any finite group. Then there exists a 

ring R  such that it is strongly graded by G  and both R  and 
e

R  have type ( , )n k  . 

Proof. Let S  be a unital ring of type ( , )n k   and let R  be the group ring [ ]S G . Then clearly R  is 

strongly graded by G  and 
e

R S . In particular, 
e

R  has type ( , )n k  . There are unit-preserving ring 

homomorphisms from 
e

R  to R  (the inclusion map) and from R  to 
e

R  (which maps 
g

g G

s g


  to 

( ) ).
g

g G

s e


  It follows from Proposition 1.1 that R  and 
e

R  have the same type ( , )n k  . □ 



N.Q. Loc / VNU Journal of Science: Mathematics – Physics, Vol. 37, No. 1 (2021) 60-67 

 

66 

Proposition 3.3. Let ( , )n k  be any pair of positive integers and G  be any nontrivial finite group. Then 

there exists a ring R  of type (1,1)  such that R  is strongly graded by G  and 
e

R  has type ( , )n k . 

Proof. By Lemma 3.2, the proposition holds true in the case ( , ) (1,1)n k  . So we assume that 1 0.nk  

Assume 
2

{ , , , }
m

G e g g  . Let T  be a unital ring of type ( , )n k . We consider the free left T -module 

 
1 ( 1)

 summands

.
nk nk nk m nk

m

V T T T T T
 

       

By Corollary 2.6, 
2

V V  as left T -modules. Thus V  has type (1,1) . Let ( )
T

R End V , then R  also 

has type (1,1)  by Corollary 2.5.  

Now let the ring T  be graded trivially by G . The T -module V  is graded as follows:  

 
2 3

1
with , , , , .

m

nk nk nk

g e g g g

g G

V V V T V T V T V T




       

Clearly V T -Gr; moreover, V  is weakly G -invariant. By [5, Theorem 2.10.1], the ring 

( )
T

R End V  is strongly G -graded. The identity component 
e

R  of R  consists of homomorphims f  

such that ( )
g g

f V V  for all g G . Thus, in the matrix form, we have 

 

1

0 0 0

0 ( ) 0 0

0 0 ( ) 0 .

0 0 0 ( )

nk

e nk

nk

T

T

R T

T





 
 
 
 
 
 
  

M

M

M

 

There are unit-preserving ring homomorphisms from 
e

R  to T  (the projection from 
e

R  into the upper 

left corner) and from T  to 
e

R  (the diagonal map). It follows from Proposition 1.1 that 
e

R  and T  have 

the same type ( , )n k . □               

Using Lemma 3.2 and Proposition 3.3, the proof of the following theorem is similar to that of [4, 

Theorem B]. 

Theorem 3.4. Let ( , )n k   be any pair of positive integers and G  be any nontrivial finite group. For 

any pair ( , )n k  of positive integers with n n   and k k∣ , there exists a ring R  of type ( , )n k   such 

that R  is strongly graded by G  and 
e

R  has type ( , )n k . 

Proof. By Proposition 3.3, there exists a ring T  which is strongly graded by G  in such a way that T  

has type (1,1)  and 
e

T  has type ( , )n k . By Lemma 3.2, for the given pair ( , )n k   there exists a ring T   

strongly graded by G  such that both T   and eT   have type ( , )n k  . Let R T T   . Then the ring R , 

with the component-wise grading, is strongly graded by G . In particular, we have 
e e eR T T   . 

Applying Proposition 1.2 yields that the type of R  is ( (1, ), (1, )) ( , )max n lcm k n k    , while the type of 

e
R  is ( ( , ), ( , )) ( , )max n n lcm k k n k   . □        

We conclude this paper with some remarks concerning strongly G -graded rings, where G  is an 

arbitrary group (see also [3]). In general, we do not know whether Theorems 3.1 and 3.4 are still true if 
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G  is any infinite group. However, we are able to prove Theorem 3.1 for G   and for any pair (1, )k  

with 1k  . Indeed, let 
1k

R


 be the directed graph consisting of one vertex and 1k   loops. We consider 

the Leavitt path algebra  
1

( )
K k

L R


 of 
1k

R


 with coefficients in a field K  (see [8, 9]), which has type 

(1, )k  (in general, it follows from the separative cancellation proved in [9] that the Leavitt path algebra 

of a finite directed graph either has IBN, or has type (1, )m  for some 1m  ; we thank the referee for 

pointing out this fact). It is well-known that Leavitt path algebras are naturally -graded. Moreover, 

since 
1k

R


 has no sinks, the algebra 
1

( )
K k

L R


 is strongly -graded by [10, Theorem 3.15] (this could 

also be deduced directly from definition of the -grading on 
1

( )
K k

L R


). Finally, it follows from the 

proof of [9, Theorem 5.3] that the identity component 
1 0

( )
K k

L R


 is an ultramatricial K -algebra, i.e., it 

is a direct limit of finite direct products of matrix algebras over K . It is known (see, e.g., [1, Exercise 

1.17]) that every ultramatricial K -algebra has IBN, and so 
1 0

( )
K k

L R


 has IBN. As a conclusion, the 

algebra 
1

( )
K k

L R


 is strongly -graded of type (1, )k , whereas its identity component has IBN. 

4. Conclusion 

In this paper, we have considered the IBN property and the type of the identity component 
e

R  of a 

strongly G -graded ring R  in relationship with the type of R , where G  is any nontrivial finite group. 

More concretely, we have shown that for any pair of positive integers ( , )n k , there exist strongly G -

graded rings R  such that R  has type ( , )n k  and 
e

R  has IBN, or 
e

R  has a given type ( , )n k   with n n  

and k k∣  (Theorems 3.1 and 3.4). 
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