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Abstract: The aim of this paper is to find out suitable conditions for almost surely exponential
stability of communication protocols, considered for nonlinear hybrid system under stochastic
perturbations. By using the Lyapunov-type function, we proved that the almost surely exponential
stability remain be guaranteed as long as a bound on the maximum allowable transfer interval
(MATI) is satisfied.
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1. Introduction

In recent years, Networked Control Systems (NCS) were addressed strongly in the control
community because of its extensive applications in wireless as well as wireline. The pioneering papers
were proposed by Walsh, Beldiman and Bushnell [10, 11, 12]. They introduced about stability of control
systems with deterministic protocol. More recently, quite many articles and literatures referred to
study stability of hybrid systems by specifically showing the Lyapunov-type function and bounds on
the maximum allowable transfer interval (MATI), see [1, 2, 3, 4, 8, 6, 9, 13] for more details. This
paper is divided into two sections. Beside Introduction, we state Preliminary and main problem in
the second section.
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In [5], the authors solved entirely for researching the stable types of solution of hybrid systems,
modelled as follows:

() = f(x(t),e®),t e (., t.0), (1a)
e(t) = g(x(), e(®),t e (. t.o), (1b)
() =Lte(t,t.,) (1c)
7(t7) =0, (1d)
X(t) = x(t), (le)
e(t;) =b.h(k,e(t)) + @-b)e(t ).k =0,1,2,... @af)

Remind here that the variable b, belongs to the set {0,1}. If b, =1 then transmission is successful,
and the protocol h determines the updated error. While if b, =0 then the error remains unchanged
at the t.. We get a sequence (b,),_,. Let S:={0,1} and the probability space (S",F,,P) with
the sequence space

S ={(b )y, :b €S, Vkel}
where the s-algebra F, :=2° x2° ... and the probability P satisfying
P(beS" :b =1)=p,vkel .
We also assume that the random variables b, are independently and identically distributed.

Motivated from this paper, we concern to hybrid system in which exogenously stochastic
perturbation is a Wiener process. This is, up to now, one of proposed problems remain have not been
solved yet. To solve the problem, we make use of tools as introduced in [5] by defining z,,,, or

choosing the Lyapunov function W for protocol. We also, of course, use other tools for stochastic
stability from [7] in order to support our proof.

2. Preliminary and main result

Let us now consider the perturbed hybrid system that is of form

dx(t) = f,(x(t), e(t))dt + f,(x(t), e(t))dw(t),t e (¢, t,,.), (2a)
de(t) = g, (x(t), e(t))dt + g, (x(t), e(t))dw(t), t (¢, t,..), (2b)
)y =Lte(t,t.,), (2c)
r(t7) =0, (2d)
(L) = x(t,), (2e)
e(t;) =b.h(k,e(t.)) + @-b et ), k=0,1,2,... (2f)

where xel1" is the state of the system, e[1" is the error at the controller, h is the update function
that models the particular protocol, 7 is a timer to constrain both the transmission interval and the
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transmission delay, and w(t) is a Wiener process. In this paper, suppose that f,, f,, g, and g, satisfy
Lipschitz and linear growth conditions which guarantee the existence and uniqueness of the solution

of (2). Assume furthermore that f,(0,0)= f,(0,0)=g,(0,0)=9,(0,0) and h(k,0)=0 for all
k e[l . So system (2) has the solution &(t) := (x(t); e(t)) = (0,0) corresponding to the initial value
£ =(x",e)=(0,0).

Now, we introduce the concept of almost surely exponential stability, which can be found in
Mao [7].

Definition 1 Consider the system (2). The solution & =(x",e")=(0,0) of (1) is called almost surely

exponentially stable, if for all &,
Iimsup%log"f(t,O,fo,b)||<O, almost surely.
tow

We need the following assumptions for the stability of network and system.

Assumption (Al) The probability pe(0,1) of successful transmission of the k-th sampling time
is identical for all ke and independent of ke[l .

Assumption (A2) The stochastic perturbations b and w are mutually independent. Put F, is
the o-algebra generated by (b, ),_,, and F, is the o-algebra generated by {w(t)}tzo. The system (2)

defined on a probability space (Q, F, P) where F=o{F, UF,}. Hereafter, we use notation E,(.)

instead of E (.|F,)and E, (.) instead of E,(.|F,).
Assumption (A3) Lyapunov functions for the protocol and the perturbed system.
(i) There exist constants 0<a,,a,, 0 <1 < 1suchthatforall el ":

a|le|” <W(e) <a, e[’ (3)

W (h(k,e)) < AW (e) . 4

(if) The evolution of Lyapunov function W is bounded in the sense that there exist a constant
a>0,4 el and a continuous function H:0" —0  such that for all x,eel]":

oW

aﬂg(xe)—<
oe oe’

9 (X, e)> <20 (e) + SH(X) (5)

(iii) There exist a C? Lyapunov function V and constants b;,b,,b, >0 such that for all x,eel]"

by X" <V (x) <b, ] (6)
LV (X) = %. f.(x€) +% £ (x,e).(a%. ,(x,6) <—bV (x), )

where
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£ (x.e)=[ ;@£ ] is the transpose of f,(x,e)ell",i=12

o7 (x.€)=[g®---g{" | s the transpose of g;(x,e) e[",i=1,2

oV V] oV V]
o%,0 ox, ox,0e ox,08,
AN Xin N 8)(1: N N Xﬂ b Xﬂ
x| C ' oxoe  oeox | S
vV A
| OX,0%, oX,0%, | | OX,08, ox,08, |
ov |oVv oV oV oV oV oV
= |, = f(x,e)=({—, fT(x,e)), —.0.(x,e)={—,q. (x,e) ).
2l {axl ax} (%) <ax N )> Y 6,5 <ae 0 )>
Here, z,,,;, follows from the equation
p=—2a¢—y(¢* +1),40)=1". 8)
We choose () such that for all z €[0,7(77)] we have
6,@)e[nn], 9)

see [5] for more details.
Theorem 2 Consider the system (2). Assume that (Al), (A2) and (A3) hold. If there exist

n€(0,1) andy > 0 as defined in (8) satisfying

a9, (x,e).%.gz(x,e) <2[(2yn—b,)W(e)- BH(x)] for almostall x,eel]" (10)

then the solution &" =(0,0) of system (2) is almost surely exponentially stable.

Proof:  We first assume that system (2a), (2b) is almost surely exponentially stable.
Consider Lyapunov-type function

U (& 1) =U(xe,1)=V(X)+yp(r)W(e). (11)
It follows that

1
b [X|° <V () <b,|x|*,a [e|* < W(e) <a, [e|*,7 < 4(z) < e

We yield
b, ||x||2 +yma, ||e||2 <U(x,e,7) =V (X) + yp(r)W(e) <b, ||x||2 +yma, ||e||2
and
mg]” =m|x.e) <U(x.ez) <M |(xe) =M’ (12)
where m=min{b,y7a,},M =max{b,,y7a,} .

By Ito’s formula and Assumption (A3), we can derive that
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2

2
dU(x,e,r)zaa—Ud @deJr(Z—Ud +%{f (x e) oV f(xe)+gz(xe)
X

; £ e)}

= aa—\;[ f,(x,e)dt + f,(x,e)dw]+ 7¢(r)—[gl(x,e)dt +0,(x,e)dw]
+7/¢(T)W (e)zdt + 2{f (%, e) f ,(x,e) +7/¢(r)g2 (x,e). Vl/ .0, (X, e)}dt
= LV(X)dt{wﬁ(r)— 9, (X,€) + yh(r)W (&) + = y¢(r)92 (). ZVY 9, (X, e)}dt

+[Z—X-fz<x,e>+y¢(r)§.gz(x,e)}dw
and

7¢(T)— 9,(x,8) + (D)W (&) + = 7¢(T)gz (x.€). ZVY -9,(x.€)

= () S 0,(0,8) + 1 -209(6) 7 (2) + D W @) + 2 (e) o (). ZVZV 9,(x8)

(5).(8).(10)

< 7¢(r)[2aw () + BH ()] - 27a(c )W (e)- 7* [ #° () +1 W (&)
+ 78(2)[(27m b )W (€) - BH (¥)]
= 27ad(x)W (&) + 7B4(x)H () — 2yad(r)W () — 14" ()W (&) — "W (€)

+ (@) [ + yn — )W (€) - BH (X)]
< ()b ().

Therefore
(7) (14)

du(x,e,7) < —hV(x)dt— y¢(r)bW(e)dt+[2—V f,(x, e)+y¢(r) g (X, e)}

=-bU (X, e 7)dt + [66_\; f,(x.e)+ y¢(r)¥.gz(x,e)}dw.
This implies
dE, [U (x,e,z-)] <—hbE, [U (x,e,r)]dt
For each k = 1,2,..., integrating both sides of (16) from t; , to t_, we get
E, [U (x(t,.b).e(t,.b), 7(t,))| < E, [U (x(t; ,.b).e(t; ,,b), z(t,)) ]+ jt t E, [-bU (x,e,7)]dt
<E,[U(X(t;,.b).e(t; 1,b),z(t,) ]

If at time t, transmission is successful, i.e. if b, =1, then

U (x(t,b). e(t; ,b), 7(t)) <V (X(t, b)) + 17 * Ay (r(t )W (e(t, . b)).

(13)

(14)

(15)

(16)

(17)
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On the other hand if transmission fails, i.e. if b, =0then
U (x(t,,b).e(t; ,b), 7(t;)) <V (x(t,, b)) + 77y (z (£ )W (e(t, . b)).

e {E[ J
< p{E, [V (x(t,.b)]+ 7 ° Arh(z (t,))E,, [W (e(t, b)) ]}
+ (1= p){E, [V (X(t, b))+ 7 v (z(t ) E, [W (e(t, ,b))]}

<E, [U(x(t,b).e(t,.b), 7(t))] - x3mE,, [W (e(t,, b))]
where x:=1—(1-p+ pA)y~>.
From (16) it follows that

E, [U(&(tb),7(t)] = E, [U (x(t,b),e(t,b), z(t)] <e > *E, [U (&(t/ ,b), 2(t,) |-

Taking expectation in b, we obtain

e"'E, {E, [U(£(tD). c(t)]} <e™E, {E,[U (6t b)) ]} (19)

)]

(7).18 2 (20)
< ME, |4 —mzebﬁﬁ E, {E.[W(e(t; b))}

From (12), (19) and (20), it follows that
me™E, {E, [£(t.b)[} <e™E, {E, [U(£(t.b),z(1))]}
<e®E,{E,[U(&(t b). 7)) ]} < ME, &

These give

(18)

and

0<e™E, {E,[U(E( b)) ]} =e*E, {E,[

Hence
M _
E, {E, JEEb)[} < —E, I&,|F €™, vt >0. (1)
From the system (2), we have
X(t) = X(t, ) + f fds+ "1, dw(s)
and
t t
et) =e(t )+ | gds+ jtk 9,0w(s) .
In addition, the conditions f,(0,0)= f,(0,0)=9,(0,0)=9,(0,0) lead to exist a positive
constant K such that
{II L) VL xel <K|oe)f 2
.8 v g, (x. ) <Kxo)f
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Therefore, we obtain
E, [x®| <3[E K1) +E, ([ £s)’ +E,(]] faw)? }

<3 EX(L)+ (-1 E, Fds+ [ E fzds}

233[E X2 (t,) + 7K j E,[|€()| ds + K j EW||§(s)||2ds}
SS[E K1)+ (@ +DK ] E, 6@ ds}
and

E, [e®f < 3|:Ewe2 )+ @K E, |6 ds}. 23)

As a result

E, €[ =E.|(x. @) = E.[x®) +E. Je®)] < S[EW e +2(+DK [ E, Je)f ds}.

Hence
(t sup. E,[@ D) J<3[EbE Il D) +2(r+1)Kj "E,E,[I£6. D) ds}
SS[FEW”%" e > +2(r+1)|<j E. |5 e %Sds}
33{1—3 K(;+1)(1—eb3’)}M E,||&| e
b, m
Sce*bs"m’
where

c=31-2 K(z+1)1-e>) | M E |5 -
b, m
Applying Chebyshev’s inequality, we get

E, [ sup E, ||§(t,b)||2j

ef%tkﬁ

IA

I
P{b: sup E, |Etb)| > e 2‘“}

te<t<ti,

*Etkﬁ
<Ce 2

Since t, =0 and 0< &<t —t <7, itis clear that

=e ? +e +-++ < 00,
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Using Borel-Cantelli’s lemma argument (see Mao [7]) to conclude that there exist a set €, with

P(Q,) =1 and an integer-value random variable k, such that for every b e 3, we have

b
sup E,|Et b <e 2", vk =k (b). (24)

t<t<te,

That means

%tm

E,[Etb)[ <e 2, Vte(t, t..), Vk >k, (b).

Similarly to argument as above, using Borel-Cantelli’s lemma again, there exist a set Q, with P(Q,) =1

and an integer-value random variable k, such that for every we Q, we have

b
lEb)f <e 2", Vte (b, t,.,), vk =k, (w). (25)

Let k, =max{k, k }, Q,=Q NQ,, we have P(Q,;)=1 and
b3t
2

k+1

[E@D) <e 2™ Vte (b, b, VK >k (W), (b,w) € Q. (26)

Consequently
Iimsup%log||(§(t),b)||s-%<O. (27)
towo
The proof is completed.

Remark 3 The inequalities (5) and (10) are existent. In fact, we choose g,(x,e)=g,(x,e)=e,

W(e)=e|=(e +e )1/2 and B=0. Then we have

oW oW 172
g_gl(x,e) = <E’ g, (X,e)> :(612 +e22) <2aW(e),Va >0,
Moreover,
O*W (e
01 g, ~0<22m-bW (),

as long as 2yn—h, >0.
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