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Abstract: The aim of this paper is to find out suitable conditions for almost surely exponential 

stability of communication protocols, considered for nonlinear hybrid system under stochastic 

perturbations. By using the Lyapunov-type function, we proved that the almost surely exponential 

stability remain be guaranteed as long as a bound on the maximum allowable transfer interval 

(MATI) is satisfied. 
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1. Introduction 

In recent years, Networked Control Systems (NCS) were addressed strongly in the control 

community because of its extensive applications in wireless as well as wireline. The pioneering papers 

were proposed by Walsh, Beldiman and Bushnell [10, 11, 12]. They introduced about stability of control 

systems with deterministic protocol. More recently, quite many articles and literatures referred to 

study stability of hybrid systems by specifically showing the Lyapunov-type function and bounds on 

the maximum allowable transfer interval (MATI), see [1, 2, 3, 4, 8, 6, 9, 13] for more details. This 

paper is divided into two sections. Beside Introduction, we state Preliminary and main problem in 

the second section.  
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In [5], the authors solved entirely for researching the stable types of solution of hybrid systems, 

modelled as follows: 
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Remind here that the variable 
kb belongs to the set  0,1 . If 1kb   then transmission is successful, 

and the protocol h  determines the updated error. While if 0kb   then the error remains unchanged 

at the 
kt . We get a sequence ( )k kb 

. Let  : 0,1S   and the probability space ( , , )bS F P  with 

the sequence space 

 : ( ) : ,k k kS b b S k     

where the σ-algebra : 2 2 ...S S

bF     and the probability P  satisfying 

( : 1) ,kP b S b p k     . 

We also assume that the random variables 
kb  are independently and identically distributed. 

Motivated from this paper, we concern to hybrid system in which exogenously stochastic 

perturbation is a Wiener process. This is, up to now, one of proposed problems remain have not been 

solved yet. To solve the problem, we make use of tools as introduced in [5] by defining
MATI or 

choosing the Lyapunov function W for protocol. We also, of course, use other tools for stochastic 

stability from [7] in order to support our proof. 

2. Preliminary and main result  

Let us now consider the perturbed hybrid system that is of form  

                                   

1 2 1

1 2 1

1

( ) ( ( ), ( )) ( ( ), ( )) w( ), ( , ),

( ) ( ( ), ( )) ( ( ), ( )) w( ), ( , ),

( ) 1, ( , ),

( ) 0,

( ) ( ),

( ) ( , ( )) (1 ) ( ), 0,1, 2,...

k k

k k

k k

k

k k

k k k k k

dx t f x t e t dt f x t e t d t t t t

de t g x t e t dt g x t e t d t t t t

t t t t

t

x t x t

e t b h k e t b e t k

















  

  

 





   

                    

(2 )

(2 )

(2 )

(2 )

(2 )

(2 )

a

b

c

d

e

f

 

 

where nx  is the state of the system, ne  is the error at the controller, h is the update function 

that models the particular protocol, τ is a timer to constrain both the transmission interval and the 
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transmission delay, and w(t) is a Wiener process. In this paper, suppose that 
1f , 

2f , 
1g  and 

2g satisfy 

Lipschitz and linear growth conditions which guarantee the existence and uniqueness of the solution 

of (2). Assume furthermore that 
1 2 1 2(0,0) (0,0) (0,0) (0,0)f f g g    and ( ,0) 0h k   for all 

k . So system (2) has the solution ξ(t) := (x(t); e(t)) = (0,0) corresponding to the initial value 

* * *: ( , ) (0,0)x e   .  

Now, we introduce the concept of almost surely exponential stability, which can be found in 

Mao [7]. 

Definition 1 Consider the system (2). The solution * * *( , ) (0,0)x e    of (1) is called almost surely 

exponentially stable, if for all 
0   

0

1
limsup log ( ,0, , ) 0

t

t b
t

 


 , almost surely. 

We need the following assumptions for the stability of network and system. 

Assumption (A1) The probability p (0,1)  of successful transmission of the k-th sampling time 

is identical for all k  and independent of k . 

Assumption (A2) The stochastic perturbations b and w are mutually independent. Put 
bF  is 

the σ-algebra generated by ( )k kb 
, and 

wF  is the σ-algebra generated by  
0

w(t)
t

. The system (2) 

defined on a probability space (Ω, F, P) where  wbF F F  . Hereafter, we use notation (.)bE  

instead of 
b(. | )bE F and 

w (.)E  instead of 
w w(. | )E F . 

Assumption (A3) Lyapunov functions for the protocol and the perturbed system. 

(i) There exist constants 
1 20 ,a a , 0 < λ < 1 such that for all ne : 

                                       2 2

1 2W(e) aa e e                                    (3) 

                                                             ( ( , )) ( )W h k e W e .                                                       (4) 

(ii) The evolution of Lyapunov function W is bounded in the sense that there exist a constant 

0,    and a continuous function : nH   such that for all , nx e : 

                              1 1. ( , ) , ( , ) 2 ( ) ( )TW W
g x e g x e W e H x

e e
 

 
  

 
                  (5) 

(iii) There exist a 2C  Lyapunov function V and constants 
1 2 3, , 0b b b   such that for all , nx e  

                                                                   
2 2

1 2( )b x V x b x                                                           (6) 

                      
2

1 2 2 32

1
( ) : . ( , ) ( , ). . ( , ) ( )

2

TV V
LV x f x e f x e f x e b V x

x x
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(1) ( )( , )T n
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. 

Here, 
MATI  follows from the equation 

                                  2 12 ( 1), (0)          .                                           (8) 

We choose τ(η) such that for all  0, ( )    we have  

                                  1( ) ,      ,                                                                     (9) 

see [5] for more details. 

Theorem 2 Consider the system (2). Assume that (A1), (A2) and (A3) hold. If there exist 

(0,1)  and γ > 0 as defined in (8) satisfying 

              
2

2 2 32
( , ). . ( , ) 2 (2 ) ( ) - ( )T W

g x e g x e b W e H x
e

 


 


 for almost all , nx e                 (10) 

then the solution 
* (0,0)   of system (2) is almost surely exponentially stable. 

Proof:  We first assume that system (2a), (2b) is almost surely exponentially stable. 

Consider Lyapunov-type function  

                         ( , ) ( , , ) : ( ) ( ) ( )U U x e V x W e       .                                                   (11) 

It follows that 

2 2 2 2

1 2 1 2

1
( ) , W(e) a , ( )b x V x b x a e e   


       . 

We yield  

2 2 2 21

1 1 2 2( , , ) ( ) ( )W(e)b x a e U x e V x b x a e           
and  

                    2 2 2 2
( , ) ( , , ) ( , )m m x e U x e M x e M                        (12) 

where    1

1 1 2 2min , , max ,m b a M b a   . 

By Ito’s formula and Assumption (A3), we can derive that 
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This implies 

                              3( , , ) ( , , )w wdE U x e b E U x e dt   .                         (16) 

For each k = 1,2,…, integrating both sides of (16) from 1kt


  to 
kt , we get 
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      (17) 

If at time 
kt  transmission is successful, i.e. if 1kb  , then  

2( ( , ), ( , ), ( )) ( ( , )) ( ( )) ( ( , )).k k k k k kU x t b e t b t V x t b t W e t b         
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On the other hand if transmission fails, i.e. if 0kb  then 

2( ( , ), ( , ), ( )) ( ( , )) ( ( )) ( ( , )).k k k k k kU x t b e t b t V x t b t W e t b         

These give 
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From (12), (19) and (20), it follows that 
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From the system (2), we have 
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t t
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Therefore, we obtain  
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Applying Chebyshev’s inequality, we get 
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Using Borel-Cantelli’s lemma argument (see Mao [7]) to conclude that there exist a set 
1  with 

1( ) 1P    and an integer-value random variable 
0k  such that for every 

1b  we have 
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Similarly to argument as above, using Borel-Cantelli’s lemma again, there exist a set 
2  with 

2( ) 1P    

and an integer-value random variable 
1k  such that for every 

2w  we have 
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Let  0 1max ,ck k k , 
0 1 2   , we have 
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Consequently 

                               31
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The proof is completed. 

Remark 3 The inequalities (5) and (10) are existent. In fact, we choose 
1 2( , ) ( , )g x e g x e e  , 

 
1/ 2

2 2
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as long as 
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