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Abstract: This paper addresses the problem of H,, finite-time boundedness for discrete-time
neural networks with interval-like time-varying delays. First, a delay-dependent finite-time
boundedness criterion under the finite-time H,, performance index for the system is given based
on constructing a set of adjusted Lyapunov—Krasovskii functionals and using reciprocally convex
approach. Next, a sufficient condition is drawn directly which ensures the finite-time stability of
the corresponding nominal system. Finally, numerical examples are provided to illustrate the
validity and applicability of the presented conditions.
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1. Introduction

In recent years neural networks (NNs) have received remarkable attention because of many
successful applications have been realised, e.g., in prediction, optimization, image processing, pattern
recognization, association memory, data mining, etc. Time delay is one of important parameters of
NNs and it can be considered as an inherent feature of both biological NNs and artificial NNs. Thus,
analysis and synthesis of NNs with delay are important topics [1-3].

It is worth noting that Lyapunov’s classical stability deals with asymptotic behaviour of a system
over an infinite time interval, and does not usually specify bounds on state trajectories. In certain
situations, finite-time stability, initiated from the first half of the 1950s, is useful to study behaviour of
a system within a finite time interval (maybe short). More precisely, those are situations that state
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variables are not allowed to exceed some bounds during a given finite-time interval, for example, large
values of the state are not acceptable in the presence of saturation [4-5]. By using the Lyapunov
function approach and linear matrix inequality (LMI) techniques, a variety of results on finite-time
stability, finite-time boundedness, finite-time stabilization and finite-time H,, control were obtained
for continuous- or discrete-time systems in recent years [5-14]. In particular, within the framework of
discrete-time NNs, there are two interesting articles [9, 10], which deal with finite-time stability and
finite-time boundedness in that order.

To the best of our knowledge, #,, finite-time boundedness problem for discrete-time NNs with
interval time-varying delay has not received adequate attention in the literature. This motivates our
current study. For that purpose, in this paper, we first suggest conditions which guarantee finite-time
boundedness of discrete-time delayed NNs and reduce the effect of disturbance input on the output to
a prescribed level. Soon afterward, according to this scheme, finite-time stability of the nominal
system is also obtained. Two numerical examples are presented to show the effectiveness of the
achieved results.

Notation: Z, denotes the set of all non-negative integers; R™ denotes the n-dimensional space
with the scalar product xTy; R™" denotes the space of (n x r) —dimension matrices; AT denotes the
transpose of matrix A; A is positive definite (4 > 0) if xTAx > 0 for all x # 0; A > B means A —
B > 0. The notation diag{...} stands for a block-diagonal matrix. The symmetric term in a matrix is
denoted by .

2. Preliminaries

Consider the following discrete-time neural networks with time-varying delays and disturbances
x(k +1) = Ax(k) + Wf(x(k)) + Wyig(x(k — h(k))) + Cw(k), k € Z,,
z(k) = Ayx(k) + Dx(k — h(k)) + CLw(k), Q)
x(k) = o(k), k € {—h,,—h, +1,...,0},
where x(k) € R™ is the state vector; z(k) € RP is the observation output; n is the number of neurals;
fR)) = [f1 (1 (k)), fo(ea(R)), -, frn (e (D],
gx(k = h(k))) = [g1(x1(k = h(K))), g2 (x2 (k — R(K))), ..., Gn (Xn (k — R(K)D]T"
are activation functions, where f;, g;, i = 1, n, satisfy the following conditions
3a;>0: |fi(©] <alél, vi=Tn VE€R, @
3b; > 0: |g;(&)| < b;|é], Vi=1n, VEER.

The diagonal matrix A = diag {a,,a,,...,a,} represents the self-feedback terms; the matrices
W, W, € R™™" are connection weight matrices; C € R™*4,(C; € RP*? are known matrices; A,,D €
RP*™ are the observation matrices; the time-varying delay function h(k) satisfies the condition

0<hy <h(k)<h, VkeL, ©)

where hy, h, are given positive integers; ¢ (k) is the initial function; external disturbance w(k) € R4
satisfies the condition

N owT(Hw(k) <d, (4)
where d > 0 is a given number.

Definition 2.1. (Finite-time stability) Given positive constants c;, c,, N with ¢; <c,,N € Z, and a
symmetric positive-definite matrix R, the discrete-time delay neural networks



12 L.A. Tuan / VNU Journal of Science: Mathematics — Physics, Vol. 36 No. 3 (2020) 10-23

x(k+1) =Ax(k) + Wf(x(k)) + Wig(x(k — h(k))), k€Z,, 5)
x(k) =@(k), k€ {—h,,—h,+1,...,0},
is said to be finite-time stable w.r.t. (¢;,c,, R, N) if

T T
ke{_hzmgz(ﬂ 0}<p (BRp(k) <c; = x (kRx(k)<c, Vke{l,2,...,N}.

Definition 2.2. (Finite-time boundedness) Given positive constants ¢4, ¢,, N with ¢; < ¢,, N € Z, and
a symmetric positive-definite matrix R, the discrete-time delay neural networks with disturbance
x(k+1) =Ax(k) + Wf(x(k)) + Wyg(x(k —h(k))) + Cw(k), k€EZ,, ()
x(k) =e@k), k€ {—hy,,—h,+1,...,0},
is said to be finite-time bounded w.r.t. (¢1, ¢z, R, N) if

T < T
ke{—hzm%;(ﬂ,...,o}go (MRp(k) <c; = x (k)Rx(k)<c, Vke{l1,2,...,N},

for all disturbances w (k) satisfying (4).
Definition 2.3. (H,, finite-time boundedness) Given positive constants ¢y, c,,y, N with ¢; < c,, N €
Z, and a symmetric positive-definite matrix R, system (1) is H, finite-time bounded w.r.t.
(c1, ¢, R, N) if the following two conditions hold:
(i) System (6) is finite-time bounded w.r.t. (¢;, ¢, R, N).
(if) Under zero initial condition (i.e., ¢(k) =0 Vk € {—h,,—h, +1,...,0}), the output z(k)
satisfies
k=0 2" ()z(k) <y XR= 0" (K)w(k) ()
for all disturbances w (k) satisfying (4).
Next, we introduce some technical propositions that will be used to prove main results.

Proposition 2.1 (Discrete Jensen Inequality, [15]). For any matrix M € R™" M = MT > 0, positive
integers ry, , satisfying r; < r,, a vector function w: {ry,; +1,...,15} = R", then

75 T 5 5
Z w@) | M z 0@ | < ty—r+ 1)2 T ()Mo (D).

Proposition 2.2 (Reciprocally Convex Combination Lemma, [16, 17]). Let R € R™™ be a symmetric
positive-definite matrix. Then for all vectors ¢;,{, € R™, scalars a; > 0,a, > 0 with a; +a, =1
and a matrix S € R™" such that
R S
[ST R] =0,

the following inequality holds

ailngR§1+aiZ§2TR§z Z ] [ST R [ ]

Proposition 2.3 (Schur Complement Lemma, [18]). Given constant matrices X, Y, Z with appropriate
dimensions satisfying X = X7, Y = YT > 0. Then
X ZT

X+7Z"v"17<0 o [
7 -Y

| <o
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3. Main results

In this section, we investigate the H,, finite-time boundedness of discrete-time neural networks in
the form of (1) with interval time-varying delay. It will be seen from the following theorem that
reciprocally convex approach is employed in our derivation. Let’s define hy; = hy, — hy, y(k) =
x(k + 1) — x(k) and assume there exists a real constant = > 0 such that

T
ke{—hz,r—nhi)il,...,—l}y Ry () <.
Before present main results, we define the following matrices
F = diag{a,,...,a,}, G = diag{b,,...,b,},

911 = _6(P + Sl) + (h12 + 1)Q + Rl' le = 651, 918 - AP,

Qg = h% (A=DS1, Y10 = h%z(A —1)S3, Q411 = AI’ W12 =F,

QZZ = Shl(_Rl + R2 - 552) - 651, Qz3 = Q34 = 5h1+1(52 - S), 924 = 6h1+15,

Q33 = —6™MQ — 8M*1(285, =S —8T), O34, =D, Q3,3 =G,

Quq = —6"2Ry — §MHLS,, Qg5 = Qg = Q11,11 = Q1212 = Qy313 = —1,

Qsg = wTp, Q59 = h%WTSL Q510 = h%ZWTSZr

Qg = W1TP» Qg9 = h%W1T51: Q6,10 = h%2W1T52'

Q77 = —SLNI, Q7g = CTP, Q79 = h%CTsp Q7,10 = h%ZCTsz' Q7,11 = Cir.

Qgg = =P, Qg9 = _h%'sl' Q10,10 = —hfzsz»

Q;; = 0 forany other i,j: j > i, Q; = Qf,i>],

1 1
p1= 5c1(hy +hy)(hiz + DN, p, = ETh%Z(hl +hy +1)8N 0,

Ay = yd = 3641, Ay = c18N Ay, Ay = pids, Ay = cihy8VHMA,

Ags = crhyp 6V M2 0g, Ay = %Th%(hl + 1)6N* Mg, Ayy = pads,

Agp = =18V 12y, Az = —pid3, Mgy = —c1hy 5V,

Ass = —c1hyp8V 225, Age = _%Th%(hl +1)§N*MAg, g7 = —pals,

A;; =0 foranyother i,j: j >1i, Ajj = Ajj,i> ).
Theorem 3.1. Given positive constants c;,c,,y, N with ¢; < c,, N € Z, and a symmetric positive-
definite matrix R. System (1) is H,, finite-time bounded w.r.t. (cq,cy, R, N) if there exist symmetric

positive definite matrices P, Q, Ry, Ry, S1,S, € R™™, a matrix § € R™™ and positive scalars 4;, i =
1,7, 8 = 1, such that the following matrix inequalities hold:

AR <P <M,R, Q <AsR, Ry <A4R, Ry < AR, S; < Agl, S, < A1, 8)
- _[S2 S

g =g 52] >0, ©)
Q = [Qij]13x13 <0, (10)
A = [Aij]747 < 0. (11)

Proof. Consider the following Lyapunov—Krasovskii functional:
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4
Vi) = ) Vi),
i=1

where
Vi) = x" ()P (),
—hi+1 k-1
Bio= Y ) STITET@ex),

s=—hy+1 t=k—-1+s

k-1 k-h;-1
Va(k) = Z SE1-5xT ()R, x(s) + Z SE1-5xT ($)Ryx(s),
S:k—hl S:k—hz
0 k-1 —hq k-1
W= > mETITHYTOSYO+ ) ) ks TOSy ).
s=—hy+1 t=k—-1+s s=—hy+1 t=k—1+s

Denoting

n(k):=[x"k) k) g7k —h(k) " ®I, =4 W W (]
and taking the difference variation of V;(k),i = 1,...,4, we have
Vitk + 1) = 8Vy(k) = xT(k + 1)Px(k + 1) — 6xT (k)Px (k)

x(k) Trar x(k)
_ f(x(k)) wT f(x(k))
= lg(x(k —n(on| |wr[PH W M g - h(k)))]
w (k) cT w(k)
—5xT(k)Px (k)
=nT(k)I'TPry(k) — 6xT(k)Px(k), (12)
—hi+1 k —hi+1 k-1
Vo(k+ 1) — 8Vy(k) = S txT()Qx(t) — ST (6)Qx(t)
—hy+1 k-1 k-1
= xT(k)Qx(k) + S txT(£)Qx(t) — K txT(£)Qx(t)
sz—zhz+1 [ t=zk+s t;-s
— §F k=145 Tk — 1+ 5)Qx(k — 1+ 5)]
—hy+1
- Z [T (k) Qx (k) — 6 5xT(k — 1 + $)Qx(k — 1 + )]
s=—hy+1

—hy+1

= (hy — hy + DxT(k)Qx(k) — Z S17xT(k — 14 5)Qx(k — 1 + 5)

s=—h,+1
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k—hy
= (hyz + DxT(k)Qx(k) — Z §*xT(s)Qx(s)
s=k—h,
< (hyz + DxT () Qx (k) — %~ KMEDLT (k — h(k))Qx(k — h(k))
< (hiz + DxT()Qx (k) — 8™ x™ (k — h(k))Qx(k — h(k)), (13)
k k-1
Vi(k +1) — 8V5(k) = 5% SxT(s)Ryx(s) — 5% =SxT(s)Ryx(s)
’ ’ s=kZ—h1 ' S:Zhl '
k—hy k—-h;-1
+ 5%=SxT(s)Ryx(s) — 8% SxT(s)Ryx(s)
s=kZ—h2 i S:th i
= xT(k)Ryx(k) + x" (k — hy)[6" (—=Ry + Ry)1x(k — hy)
—5h2xT(k — hy)Ryx(k — hy), (14)
Vo(k+1) =6V, (k) = h 8% tyT(t)S,y(t) — h, 6% tyT(t)S,y(t)
—hq —hq k-1
+ Z Z hra8* T (OS,(0) - Z Z hi28% T (OS2 ()
s=—hy+1 t=k+s s=—hy+1 t=k—1+s

0
= Dm0 — 8y (k= 1+ )50k — 1+ )]

S=—h1+1
_h1
Y bl (08,00 — 87y~ 1+ $)S,y(k — 1+5)]
S=—h2+1

0
= hy"(k)S1y(k) — hy Z 515y T(k— 1+ $)S,y(k — 1+ 5)

s=—h;+1
-hy
FRLY IS0 —hiy Y. 8y — 14 5)S,y(k—1+5)
S=—h2+1
k—1
= YT OIRES, + hESaly() B ) 855y ()S,¥(s)
s=k—h4
k—1-hy
—h ) YOS,
s=k—h,
k—1

< yT(k)[hiS1 + hi S,y (k) — hyd z YT ($)S1y(s)
s=k—h4
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— hyp 8N LT YT ()8, (s) (15)
By Proposition 2.1,
k-1 k-1 k-1
_ T _
Mo Y VOISO S - e y(s)] 51[ > y(s)]
S:k—hl s=k— h1 S:k—hl
—8[x (k) — x(k — h)]"S1 [x (k) — x(k — hy)], (16)
k-1—hy
— hyp6Mtt yT($)S2y(s)
S=Zh2
k—h,—1 k—h(k)-1
==k YOS+ ) YT ESYE)
s=k—h(k) s=k—h,

k- h1 k- h1
ys)| S y(s)
=k— h(k) s=k— h(k)

< 5h1+1 (_ hlz
- (k—hl—l)—(k—h(k))+1

N k— h(k) 1 k—h(k)-1
12
_ y(s)| S y(s)
ER DGR | 2 ] [Z D
N 1
= 6h1 1 (_ (h(k) — hl)/hlz (:’Lrszgl (hz _ h(k))/h12 (2 SZ{Z)

where {; = x(k — hy) — x(k — h(k)) and {; = x(k — h(k)) — x(k — h,). From note that
h(k) = hy >0, hy — h(k) >0, h(k) — hy 4 hy —h(k) _
h’lZ h12 h12 h12
¢ =0 if (h(k) —hy)/h1z =0 and ¢, =0 if (hy —h(k))/hi2 =0,
and the hypothesis (9), Proposition 2.2 gives us
k—1-h,

“hp8M Y YT ()Sy(s) < —ah gﬂT[ggr ss] [g]

S=k—h2

= —5h1+1[§irsz(1 + 0S¢+ 4357 + (;52@]- (7
Substitute (16), (17) into (15) and combine with (12)-(14), we get
Vk+1)—6V(k) <nT(k)r'Pry(k) + xT(k)[-6P + (hyp + 1)Q + Ry — 6S;]x(k)
+ xT(k)[26S,)x(k — hy)
+ xT(k — h(k)[-6™Q — 6™M*1(2S, — S — ST)]x(k — h(k))
+ xT(k — h(k)[26M*1(S, — ST]x(k — hy)
+ xT(k — h(k)[26™*1(S, — $)]x(k — hy)
+ xT(k — hy)[6™ (=R, + R,) — 6S; — 6™ %18, x(k — hy)
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+ xT(k — hy)[26™M*1S|x(k — h,)
+xT(k — hp)[-6"2R, — 6M*1S,1x(k — hy) + yT(K)[h3S; + hi,S,]y(k)

+ 2T (k)2 (k) — 5LN oT(R)w(k) + (%N o () w (k) — 2T (k) z (k).

=nT(rTrro(k)
+ xT(kK)[=6P + (hyp + 1)Q + R, — 8S; + ATA ]x(k)
+ xT(k)[26S1]x(k — hy) + xT(k)[2ATD]x(k — h(k))
+xT (k) [247 C;]w (k)
+ xT(k — h))[6"M (=R; + R,) — 8S; — 6™M*1S,|x(k — hy)
+ xT(k — hy)[26™M+1(S, — S)]x(k — h(k))
+ xT(k — hy)[26™M*1S]x(k — hy)
+ xT(k — h(k))[-6™Q — §™M*1(2S, — S — ST) + DTD]x(k — h(k))
+xT(k — h(k))[26"*1(S, — )]x(k — hy) + xT(k — h(k))[2DTC,]w (k)
+ xT(k — hy)[-6"2R, — 6™M*1S,|x(k — hy)

+ 0T [~ 351 + CTC: | @) + YT UOIES, + 3,51y ()

+ JrwT()w(k) — 2" (k)z(k). (18)
Besides, from (2), it can be verified that
0 < —fTx()f(x(k) + xT(k)F?x(k), (19)
0 <—g"(x(k —h()))g(x(k = h(k))) + x" (k — h(k))G*x(k — h(k)).

Moreover, by setting
§(k) = [xT(k) xT(k—hy) xT(k—h(k)) xT(k—hy) fT(x(k)) g"(x(k —h(k))) w"F)]"
PA 0 0 O PW PW; PC
h2,S,(A—1) 0 0 0 h%4,S,W h%4,S,W, h2,S,C
we can rewrite
nT(k)r'TPry(k) + yT(k)[hiS; + hiS,]y (k)

=&l o |P[A 0 0 0 W W, ClE®K)
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+&T(R)| 0 [[hiS; +hEpS)[(A-D) 0 0 0 W Wy Cl§(k)

-1

P 0 0
= ET(k)YT|0 RISy O | YE(k). (20)
0 0 his,
Consequently, combining (18), (19) and (20) gives

-1

P 0 0
Vk+1) —8V(k) < Tk @ +YT|0 hiS; 0 Y |&k)
0 0 h3S,

+ g 0T (o k) — 2T (k)z(k), (21)
where
Q1 +ATA; + F2 Qq, ATD 0 0 0 ATc,
* 0y, Q23 Qg 0 0 0
* * Q33+DTD+G? Q3 0 0O DpTc,
d: = * * * Q44 0 0 0
* * * * —1 0 0
* * * * —1 0
i * * * * * * —SLN] + CirCl_
Next, by using Proposition 2.3, it can be deduced that
P 0 o 1"
d+YT[0 A{S; 0 | Y<0 & Q<0
0 0 hLS,

This, together with (21), gives
Y
Vik+1)—6V(k) < 5—NwT(k)w(k) vk € Z,.
This estimation can be rewritten as
V(k) < 8V(k— 1)+ 6leT(k ~Dw(k—1) VkEN.

By iteration, and take assumption (4) into account, it follows that

k-1

V(k) < 5%V (0) + SLNZ 551750, T () (s)
s=0
N-1

< MV (0) + 6%5”* z wT()a(s)

s=0
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<8"V(0) +%d vkez,. (22)
From assumption (8) and x(k) = ¢(k) Vk € {—h,,—h, +1,...,0}, itis obvious that
—h1+1 -1
V(0) = xT(0)Px(0) + z Z 51 txT(£)0x(t)
s=—hy+1 t=—1+s
-1 -h,-1
+ Z §7175xT ()R, x(s) + Z §-175xT ()R, x(s)

S:—hl S:—hz
—hq -1

0 -1
) mETTYTOSYO+ Y ) ks 08y ©)

s=—h;+1 t=—1+s s=—hy+1 t=—1+s
—h,+1 -1

< A,xT(0)Rx(0) + A58~ Z Z *T(O)Rx ()

s=—hy+1 t=—1+s

-1 —hi—-1
b A,8m1 Z xT($)Rx(s) + Agh1 Z *T()Rx(s)
S=—h1 S=—h2
0 -1 —hy -1
FahmT SN YT Oy + Akt Y YTy
s=—h.+1 t=—1+s s=—hy+1 t=—1+s
hy(hy + 1) — hy(hy — 1
< [/12 + 136021 2(hz #1) 2 (=D 246"~ 1hy 4+ A58M271(h, — hl)] o
e R B T (23)
From (22) and (23), we obtain
V(k) < 8No +§d vk € Z,. (24)
where
hy(hy +1) — hy(hy — 1
0i= |2+ 258" 2(fa + 1) _ 1 = 1) s hy 4 A58%1 (hy — e
hy(hy + 1)

hy(hy, +1) — hy(hy +1
+ [Aﬁahl-lhl S+ 276"y 2z )2 1 )] 7.
On the other hand, from (8) it follows that

V(k) = xT(k)Px(k) = 2,xT(k)Rx(k) Vk € Z,. (25)
Note that by Proposition 2.3, the inequality (11) is equivalent to

yd — 361, + ¢; 6NN, + pids + ¢ hy SNTMA, + ¢ hy 8V T2 A
1
+Erh%(h1 + 1)8N*h) + pad, <0,

or
yd — c,61; + 6Vt1lo < 0. (26)
Consequently, we get from (24), (25) and (26) that:
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1
xT(k)Rx(k) < ﬁw”“a +ydl<c, Vk=12,...,N.
1

This implies that system (6) is finite-time bounded with respect to (cq, ¢z, R, N). To complete the
proof, it remains to show the finite-time y-level condition (7). For this, bearing (21) in mind, we see
that

V(k +1) < 8V(k) + 6leT(k)w(k) — 2T (k)z(k) VkE€Z,
and by iteration, the following estimate holds
0 <V(k) < 8*V(0) + Xid 65175 | L wT(s)w(s) — zT(s)z(s)]. 7)
Under zero initial condition, it is clear that V(0) = 0, thus (27) implies
0 < 3k 65175 | L wT(s)w(s) — 27 (s)z(s)]
= Ykl §k-1755T(9)z(s) < Tkt 6715 L 0T () w(s).

SN
Let k = N + 1, we have
_ 6N—S
S0 6V °2T(9)2(s) < ¥ Xsoo Zx @ (S)w(s). (28)
Note that 1 < §V=5 < 6N vs € {0,1,..., N}, (28) immediately yields
N N
Z 2T(s)z(s) < yz oT(s)w(s).
s=0 s=0
This estimation holds for all non-zero exogenous disturbance w (k) satisfying (4) and hence the
condition (7) is derived. This completes the proof of the theorem. [
Corollary 3.1. Given positive constants c;,c,,y, N with ¢; < ¢, N € Z, and a symmetric positive-
definite matrix R. System (5) is finite-time stable w.r.t. (¢, c3, R, N) if there exist symmetric positive
definite matrices P, Q, Ry, R, S1, S, € R™™, a matrix § € R™™ and positive scalars 1;, i = 1,7, § >
1, such that the LMIs (8), (9) and the following matrix inequalities hold
Q= [Qij]llxll <0, (29)
A= [Aij]7><7 <0, (30)
where Q is derived from Q by deleting the 7th and 11th rows and columns and A;; = —c,614, /_\l-j =
A;j for any other i,j.
Proof. The proof is similar to that of Theorem 3.1, thus is omitted. ]
Remark 3.1. As in papers [6, 13, 14], to prove Theorem 3.1 (and Corollary 3.1), we construct a set of
adjusted Lyapunov—Krasovskii functionals involving variable ratios %=1 and §%~1~t. By doing so,
we do not need to transform the original system into two interconnected subsystems as the authors did
in [7] that the obtained conditions (8), (10), (11) of Theorem 3.1 and (29), (30) of Corollary 3.1 are
still in the form of matrix inequalities as in [7]. The parameter § has the role as an adjustable
parameter and (10)-(11), (29)-(30) will become LMIs when we fix this parameter, so they can be
easily programmed and calculated by using the LMI toolbox in MATLAB [19]. This is also a
remarkable advantage of our two above results in comparison with: condition (5) in [6] and conditions
(45), (56) in [13].
Remark 3.2. Employing unknowns and free-weighting matrices will complicate the system analysis
and significantly increase the computational demand. Meanwhile, an outstanding advantage of
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reciprocally convex combination technique is that it can significantly reduce the number of decision
variables compared to other methods [16, 17]. As a result, in this paper, based on reciprocally convex
combination technique, we used minimum number of variables, e.g., (8)-(11) and (29), (30) have
exactly one free-weighting matrix. Consequently, our criteria are more compact and effective in
comparison with others. This advantage will be illustrated by means of the following examples.

Example 3.1. Consider the system (1), where

4= orl w=[T02" oossh "i=%o0s ooash
0.05

c:[ ] A, =1[035 —025], D=[02 —0.15], C,=[0.1],

0.15

S A

km
h(k) =2+ 125in27,k EZ,.

For given hy =2, h, =14, N=90,d=1,1t=1, ¢; =1, ¢, =9 and y = 1, the LMIs (8)-
(11) are feasible with § = 1.0001 and
p= [18.1478 —5.5689] 0= [ 0.0533 —0.0506] R — [ 04532 —0.0187]
—5.5689 18.8968/ —0.0506 0.0481 1 "t 7 [-0.0187 0.1914 )
R. = [ 0.2154 —0.0044] s = [0.0030 0.0002] S = [0.0475 0.0019]
27 1-0.0044 0.0852 1" “1710.0002 0.0023" %27 10.0019 0.0171)

_[~0.0474 —0.0022] , _ _ _
S=| 00017 —oo1sc) A =99628 1, =185547, A;= 00783,

A4 = 03645, A5 =0.1726, Ac = 0.0036, A, = 0.0476.
Hence, by Theorem 3.1, the system is H, finite-time bounded w.r.t. (1,9, R, 90).

Example 3.2. Consider the nominal system (5) with matrices A, W,W;,F,G,R are the same as in
Example 3.1. Then, with parameters h,, N, d, 1, ¢c;, ¢, and y having the exact same value as in Example
3.1 except h, = 25, the LMIs (8), (9), (29) and (30) are feasible with § = 1.0001 and

27.0262 2.2062] 0= [0.0702 0.0037 _ 0.3156 0.1518]
2.2062 33.9481) 0.0037 0.0528!" 1 0.1518 1.6792r
0.1365 0.0074] S = [0.7089 0.0199
0.0074 0.18191" 1
—0.0162 0.0010
0.0010 —0.0054

Ay = 2.0304, A5 =0.2069, A4 =1.0048, A, =0.0168.

For this reason, Corollary 3.1 enable us to assert that the system is finite-time stable w.r.t. (1,9, R, 90).
Figure 1 shows the response solution with the initial condition

o(k) = [g:gg] Vk € {—25,—24,...,0}.
Remark 3.3. It is well-known that improved conditions can be derived by using tighter refined Jensen
summation inequality, see [20] and references therein. However, unlike the linear systems mentioned
in [20], system (1) is a nonlinear system so the system analysis is generally more complex. Therefore,
for technical reasons, refined Jensen summation inequalities have not been utilized in this paper. We
believe that using these tools may be a good idea for improving the results mentioned above, but this
also leads to exciting new challenges that need to be overcome in our future studies.

-]

] ¢ — [ 00165 —0.0002]
0.0199 0.68481" 2~ 1-0.0002 0.0139 F

], A, =20.8563, 1, =26.6829, A3 =0.0593,

e

|
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Figure 1. Response solution of the system in Example 3.2.

4. Conclusion

In this paper, we investigate the finite-time stability and #,, performance for a class of discrete-
time neural networks subjected to interval-like time-varying delay and norm-bounded disturbances. By
constructing a set of improved Lyapunov—Krasovskii functionals and using reciprocally convex
approach, delay-dependent sufficient conditions are obtained which can be easily calculated by the
LMI Toolbox in MATLAB.
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