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Abstract: This article reports on the synthesis procedure of ZnO nanoparticles/nanofibers 

structure by electrospinning method using Zinc acetate and polyvinylpyrrolidone (PVP) surfactant 

as reagents and evaluates their luminescent properties. The microstructure of ZnO 

nanoparticles/nanofibers was observed by FE-SEM. The phase formation of ZnO 

nanoparticles/nanofibers was studied by XRD. ZnO nanoparticles/nanofibers structure shows 

strong luminescence centering at 660 nm, which has potential applications in solid-state lighting.  
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1. Introduction  

In recent years, red emission of the phosphors has become a great interest in solid-state lighting [1, 

2]. Many phosphors are being developed for potential applications in lighting such as Eu2+ doped CaS 
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[3], CaSrAlSiN3:Eu2+ [4],  and Eu2+/Mn2+ doped Ca3(PO4)2 [5]. However, most of the above-

mentioned materials need activation materials to induce light emission which is costly for large scale 

production. ZnO nanomaterials have received considerable attention in solid-state lighting because of 

its abundance in the earth and simple processing. There are a lot of published documents on reposting 

the microstructure and luminescence of ZnO nanomaterials [6,7]. Most of them revealed that ZnO 

nanomaterials displayed both ultraviolet near-band-edge emission (NBE) and visible emission which 

is limited to their applications in solid-state lighting [8,9]. Therefore, this study is an attempt to 

synthesize ZnO nanoparticles/nanofibers using electrospinning method for controlling the specific 

visible emission of ZnO. The microstructures of the ZnO nanoparticles/nanofibers were characterized 

by field emission scanning electron microscopy (FE-SEM). Light emission of ZnO 

nanoparticles/nanofibers was determined by photoluminescence spectroscopy.  

2.  Experimental Procedure 

ZnO nanoparticles/nanofibers were synthesized by electrospinning using zinc acetate (99.99 %, 

Sigma-Aldrich) / polyvinylpyrrolidone (PVP, 99.9 %, Sigma-Aldrich) at room temperature. ZnO 

nanofibers were synthesized by electrospinning using 20% weight (wt) amount of PVP. After 

electrospinning process, ZnO nanofibers were pulled out of aluminium foil and placed inside the 

furnace (Nabertherm, Germany) which was adjusted to the temperature of 600 oC at the heating rate of 

10 oC min -1 for 2 h in the ambient atmosphere. After which, the system cooled to room temperature 

naturally for the formation of ZnO nanoparticles/nanofibers structures. The crystalline structures of the 

ZnO nanoparticles/nanofibers were characterized by X-ray diffraction (XRD, D8 Advance, Bruker, 

Germany).  The microstructure was determined by field emission scanning electron microscopy 

(JEOL, JSM-6700F, JEOL Techniques, Tokyo, Japan). The luminescent properties of ZnO 

nanoparticles/nanofibers were determined by NANO LOG spectrofluorometer (Horiba, USA) using 

450 W Xe arc lamp. For comperative purpose, ZnO nanorods synthesis by hydrothermal method was 

also included in this study. 

3. Results and Discussions 

Figure 1 shows the schematic diagram of electrospinning process for ZnO 

nanoparticles/nanofibers.  Zinc acetate was mixed with PVP surfactant to induce specific viscosity 

solution for electrospinning process. Under the high electrical voltage of 10 KV, the zinc solution was 

converted into nanofibers and were deposited on the aluminium foil collector. The as-electrospinning 

ZnO structure displayed nanofiber morphology under a scanning electron microscope (SEM). Upon 

thermal annealing of 600 oC, PVP surfactant was evaporated and the smooth nanofibers were 

converted into rough morphology fibers thereafter, namely, ZnO nanoparticles/nanofibers.  

The microstructures of the ZnO particles/nanofibers synthesized by electrospinning are shown in 

Figure 2 (A-B). The synthesized ZnO nanostructure shows that a nanofiber with the diameter ~70 nm 

was constructed from nanoparticles with the diameter of ~ 20 nm as building units (Figure 1A). A high 

magnification view of ZnO nanostructure displayed the crystal plane with the interfacing of 0.2476 nm 

which is consistent with the plane of wurtzite structure of ZnO [10]. The electron diffraction (ED) 

revealed that ZnO displayed nanocrystal materials. 
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Figure 1. The schematic diagram for electrospinning of ZnO nanoparticles/nanofibers. 

 

Figure 2. (A)TEM image showing the microstructures of the  ZnO nanoparticles/nanofibers.  

(B) HR-TEM image showing the highly crystalline structure of ZnO.   

Figure 3 shows the typical XRD patterns of the ZnO nanoparticles/nanofibers synthesized by 

electrospinning. ZnO showed a relatively strong peak at 2θ = 31.8o, 34.4o, 36.1o, 47.4o, 56.50o, 62.80o, 

corresponding to the (100), (002), (101), (102), (110), (103) planes. All of the peaks can be indexed to 

the crystalline hexagonal wurtzite ZnO (JCPDS 36−1451) without any evidence of impurities, 

indicating that ZnO nanoparticles/nanofibers have been synthesized successfully. These results 

indicate that ZnO nanoparticles/nanofibers synthesized by electrospinning displayed a highly 

crystalline structure consistent with the HR-TEM image (Figure 2B).  

 

Figure 3. XRD patterns of the ZnO nanoparticles/nanofibers.    

Figure 4 shows photoluminescence (PL) spectra of ZnO nanoparticles/nanofibers synthesized by 

electrospinning in comparison with ZnO nanorods.  ZnO nanorods showed a relative strong visible 

emission peak at  530 nm and one weak near−band−edge (NBE) emission of  380 nm. Unlike the 
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ZnO nanorods, the visible emission peak of ZnO nanoparticles/nanofibers shifted to a longer 

wavelength of ~ 660 nm, and NBE peak disappeared. The dominated visible emission peak in the PL 

in ZnO suggested that oxygen vacancy defects exist in ZnO [11,12].  However, it should be noted that 

the visible emission peak of ZnO nanoparticles/nanofibers was much higher than that of ZnO 

nanorods. This significant higher visible emission of ZnO nanoparticles/nanofibers could be explained 

by the high concentration of ZnO nanoparticles on ZnO nanofiber surface, and therefore a relatively 

high number of defects at the surface were formed. The defects interfaced with each other to form 

defect energy bands resulting in the higher visible emission, inset of Figure 4.B.   

 

Figure 4. Photoluminescence of ZnO nanorods (A) and ZnO nanoparticles/nanofibers (B). 

4. Conclusions 

ZnO nanoparticles/nanofibers have been synthesized successfully by electrospinning method. In 

particular, ZnO nanofibers with the diameter of ~ 70 nm were formed from nanoparticles with the 

diameter of ~ 20 nm. ZnO nanoparticles/nanofibers showed strong red visible luminescence which has 

a potential application in solid-state lighting.     
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