Original Article

Fermions, Gauge Bosons and Higgs Masses in the 3-3-1-1 Model with Charged Lepton

Dang Trung Si^{1}, Nguyen Thanh Phong ${ }^{2, *}$, Nguyen Hua Thanh Nha ${ }^{2}$
${ }^{1}$ Can Tho Department of Education and Training, 39 3/2 Street, Ninh Kieu, Can Tho, Vietnam
${ }^{2}$ Department of Physics, Can Tho University, Campus II - 3/2 Street, Can Tho, Vietnam

Received 08 June 2020
Revised 13 January 2021; Accepted 30 January 2021

Abstract

In this paper, a new version of 3-3-1-1 model was proposed to solve the Landau pole problem of the previous versions. The masses of fermions where the masses of active neutrinos are generated through the seesaw mechanism, are calculated in detail. All the Higgs bosons and gauge bosons as well as their masses are identified and calculated.

Keywords: 3-3-1-1 model, new charged leptons

1. Introduction

One of the greatest successes of the $20^{\text {th }}$ century physics is the Standard Model (SM) of the electroweak and the strong interactions. The model has been experimentally tested with a very high precision for more than 40 years. However, besides the excellent successes, the SM still has serious problems on both theoretical and experimental sides: (i) Why the mass of top quark is much heavier than the other fermions? (ii) Why there are hierarchies in mass among the generations? (iii) Why the neutrinos have tiny masses? (iv) Why the quarks are small mix while the neutrinos are large mix? (v) The SM cannot explain the asymmetry between matter and antimatter (baryon asymmetry) of the Universe?

Because of the mentioned issues, the SM must be expanded to new models which are called Beyond the SM (BSM). The new BSMs not only have all the SM's triumph but also solve all or part of the above problems. Among the BSMs, the models based on the $S U(3)_{C} \otimes S U(3)_{L} \otimes U(1)_{X}$ (3-3-1) gauge group [1-7] have some intriguing features: First, they can give partial explanation of the generation number

[^0]problem. Second, the third quark generation is assigned to be different from the first two, so this leads to the possible explanation why top quark is uncharacteristically heavy. The physical phenomena of these series of model were investigated intensively, see, for example, in [8-14] and the references therein. The 3-3-1 model can naturally accommodate an extra $U(1)_{N}$ symmetry behaving as a gauge symmetry, resulting in some models based on $S U(3)_{C} \otimes S U(3)_{L} \otimes U(1)_{X} \otimes U(1)_{N}$ (3-3-1-1) gauge symmetry [8-11]. These versions of the 3-3-1-1 model somewhat solve the limited issues of the SM. Notice that, in the 3-3-1 and 3-3-1-1 models, the charged operator and sine of the Weinberg angle θ_{W} are defined as $Q=T_{3}+\beta T_{8}+X$ and $\sin \theta_{W}=g_{X} / \sqrt{g^{2}+\left(1+\beta^{2}\right) g_{X}^{2}}$, where T_{8} denotes the $\operatorname{SU}(3)_{L}$ generator, X is the $U(1)_{X}$ gauge charge, g, g_{X} are respectively the coupling constants of the $S U(3)_{L}$ and $U(1)_{X}$ groups. The models face a low Landau pole (Λ) at $\sin ^{2} \theta_{W}(\Lambda)=1 /\left(1+\beta^{2}\right)$ or $g_{X}(\Lambda)=\infty$ [11]. In the mentioned models, if the third component of the lepton triplets is new heavy neutral particles then the parameter β has the value of $\pm \sqrt{3}$, resulting that these models' new physics scales are blocked by the Landau pole [12, 13].Threfore , in the present work, we propose a new 3-3-1-1 model where, instead of the heavy neutral particles, the new charged leptons are used, leading to $\beta=1 / \sqrt{3}$ so that the new physics scales are free from the Landau pole. In this study, we mainly focus on the particle content of the model, identify all physical particles of the model as well as their masses. The physical phenomena of the model are reserved for future studies.

2. The 3-3-1-1 model

In this paper, we add a changed lepton to each usual $\operatorname{SU}(2)_{L}$ doublet left-handed lepton to the version considered herein to form a triplet [11]

$$
\begin{align*}
& \psi_{a L} \equiv\left(\begin{array}{lll}
\nu_{a L} & l_{a L} & E_{a L}^{-}
\end{array}\right)^{T} \sim 1,3,-2 / 3,-2 / 3, \tag{1}\\
& \nu_{a R} \sim 1,1,0,-1, \quad l_{a R} \sim(1,1,-1,-1), \quad E_{a R}^{-} \sim(1,1,-1,0), \tag{2}
\end{align*}
$$

where $a=1,2,3$ is the generation index. The first two quark generations belong to antitriplets and the third one is in triplet

$$
\begin{gather*}
Q_{\alpha L} \equiv\left(\begin{array}{lll}
d_{\alpha L} & -u_{\alpha L} & T_{\alpha L}
\end{array}\right)^{T} \sim 3,3^{*}, 1 / 3,0, \quad Q_{3 L} \equiv\left(\begin{array}{lll}
u_{3 L} & d_{3 L} & T_{3 L}
\end{array}\right)^{T} \sim 3,3,0,2 / 3, \tag{3}\\
u_{a R} \sim 3,1,2 / 3,1 / 3, \quad d_{a R} \sim 3,1,-1 / 3,1 / 3, \tag{4}\\
T_{3 R} \sim 3,1,-1 / 3,4 / 3, \quad T_{a R} \sim 3,1,2 / 3,-2 / 3, \quad \alpha=1,2 . \tag{5}
\end{gather*}
$$

The quantum numbers in the parentheses are defined upon the 3-3-1-1 symmetries, respectively.
The electric charge operator and baryon-minus-lepton charge are defined as

$$
\begin{align*}
& Q=T_{3}+\frac{1}{\sqrt{3}} T_{8}+X I_{3 \times 3}=\operatorname{Diag} \cdot\left(\frac{2}{3}+X,-\frac{1}{3}+X,-\frac{1}{3}+X\right), \tag{6}\\
& B-L=-\frac{2}{\sqrt{3}} T_{8}+N I_{3 \times 3}=\text { Diag. }\left(-\frac{1}{3}+N,-\frac{1}{3}+N, \frac{2}{3}+N\right), \tag{7}
\end{align*}
$$

where T_{8} denotes a diagonal $S U(3)_{L}$ generator, X is the $U(1)_{X}$ gauge charge, N is the $U(1)_{N}$ gauge charge.

In order to break the gauge symmetry and generating fermion masses, the 3-3-1-1 model needs the following scalar multiplets [11]

$$
\begin{gather*}
\eta=\eta_{1}^{0} \quad \eta_{2}^{-} \quad \eta_{3}^{-T} \sim 1,3,-2 / 3,1 / 3, \quad \rho=\rho_{1}^{+} \quad \rho_{2}^{0} \quad \rho_{3}^{0} \sim 1,3,1 / 3,1 / 3, \tag{8}\\
\chi=\chi_{1}^{+} \quad \chi_{2}^{0} \quad \chi_{3}^{0} \sim 1,3,1 / 3,-2 / 3, \quad \phi \sim(1,1,0,2), \tag{9}
\end{gather*}
$$

with the following VEVs

$$
\begin{equation*}
\langle\eta\rangle=u / \sqrt{2} \quad 0 \quad 00^{T},\langle\rho\rangle=0 \quad v / \sqrt{2} \quad 0^{T},\langle\chi\rangle=0 \quad 0 \quad w / \sqrt{2}^{T},\langle\phi\rangle=w^{\prime} / \sqrt{2} . \tag{10}
\end{equation*}
$$

To be consistent with low energy phenomenology, we have to impose the following condition $u, v \ll w, w^{\prime}$.

3. Fermions

The mass of charged leptons (l_{a} and the new lepton E_{a}) are obtained from the Yukawa Lagrangian,

$$
\begin{equation*}
-\mathcal{L}_{\text {Yuuawa }}^{l}=h_{a b}^{l} \bar{\psi}_{a L} \rho \rho_{b R}+h_{a b}^{E} \bar{\psi}_{a L} \chi E_{b R}+\text { H.c. }, \tag{11}
\end{equation*}
$$

where $\langle\rho\rangle=\begin{array}{lllll}0 & v / \sqrt{2} & 0^{T}\end{array}$, $\langle\chi\rangle=\begin{array}{lll}0 & \quad & w / \sqrt{2}^{T} . \text { The masses of } l_{a} \text { and new lepton } E_{a} \text { are given by }\end{array}$

$$
\begin{equation*}
\left(m_{l}\right)_{a b}=h_{a b}^{l} \frac{v}{\sqrt{2}}, \quad\left(m_{E}\right)_{a b}=h_{a b}^{E} \frac{w}{\sqrt{2}} . \tag{12}
\end{equation*}
$$

For the neutrino sector, the Dirac and Majorana masses are obtained from the following Yukawa Lagrangian,

$$
\begin{equation*}
-\mathcal{L}_{\text {Yukawa }}^{\prime}=h_{a b}^{\nu} \bar{\psi}_{a L} \eta \nu_{b R}+h_{a b}^{\prime \nu} \bar{\nu}_{a R}^{c} \nu_{b R} \phi+\text { H.c. }, \tag{13}
\end{equation*}
$$

where $\langle\eta\rangle=u / \sqrt{2} \quad 0 \quad 0^{T}$, and $\langle\phi\rangle=w^{\prime} / \sqrt{2}$. From Eq. (13), the Dirac and Majorana mass matrices are derived as

$$
\begin{equation*}
\left(m_{\nu}\right)_{a b}=h_{a b}^{\nu} \frac{u}{\sqrt{2}}, \quad\left(m_{\nu}^{R}\right)_{a b}=\sqrt{2} h_{a b}^{\prime \nu} w^{\prime} . \tag{14}
\end{equation*}
$$

With the condition $u \ll w^{\prime}$, the effective neutrino masses are achieved via Type I seesaw mechanism, namely

$$
\begin{equation*}
m_{\nu}^{L} \simeq m_{\nu} m_{\nu}^{R-1} m_{\nu}^{T} \sim \frac{u^{2}}{w^{\prime 2}} \ll 1 \tag{15}
\end{equation*}
$$

which can explain the tiny of active neutrino masses.
The quarks getting masses from the Yukawa part,

$$
\begin{align*}
-\mathcal{L}_{\text {Yukawa }}^{l} & =h_{33}^{T} \bar{Q}_{3 L} \chi T_{3 R}+h_{\alpha \beta}^{T} \bar{Q}_{\alpha L} \chi^{*} T_{\beta R}+h_{3 a}^{u} \bar{Q}_{3 L} \eta u_{a R}+h_{\alpha a}^{u} \bar{Q}_{\alpha L} \rho^{*} u_{a R} \\
& +h_{3 a}^{d} \bar{Q}_{3 L} \rho d_{a R}+h_{\alpha a}^{d} \bar{Q}_{\alpha L} \eta^{*} d_{a R}+\text { H.c. } \tag{16}
\end{align*}
$$

When the scalars develop VEVs, the masses of u_{a} and d_{a} quarks are given by

$$
\begin{equation*}
\left(m_{u}\right)_{\alpha a}=-h_{\alpha a}^{u} \frac{v}{\sqrt{2}}, \quad\left(m_{u}\right)_{3 a}=h_{3 a}^{u} \frac{u}{\sqrt{2}}, \quad\left(m_{d}\right)_{\alpha a}=h_{\alpha a}^{d} \frac{u}{\sqrt{2}}, \quad\left(m_{d}\right)_{3 a}=h_{3 a}^{d} \frac{v}{\sqrt{2}} \tag{17}
\end{equation*}
$$

whereas the masses of the new quarks, T_{a}, are derived as $\left(m_{T}\right)_{a b}=h_{a b}^{T} \frac{w}{\sqrt{2}}$.

4. Gauge Bosons

Gauge bosons' masses arise from the covariant kinetic terms of the Higgs sector,

$$
\begin{equation*}
\mathcal{L}=\left(D_{\mu}\langle\eta\rangle\right)^{\dagger}\left(D^{\mu}\langle\eta\rangle\right)+\left(D_{\mu}\langle\rho\rangle\right)^{\dagger}\left(D^{\mu}\langle\rho\rangle\right)+\left(D_{\mu}\langle\chi\rangle\right)^{\dagger}\left(D^{\mu}\langle\chi\rangle\right)+\left(D_{\mu}\langle\phi\rangle\right)^{\dagger}\left(D^{\mu}\langle\phi\rangle\right) . \tag{19}
\end{equation*}
$$

where the covariant derivative is defined as

$$
\begin{equation*}
D_{\mu}=\partial_{\mu}+i g A_{i \mu} T_{i}+i g_{X} X B_{\mu}+i g_{N} N C_{\mu}=\partial_{\mu}+i g P_{\mu}^{C C}+i g P_{\mu}^{N C}, \tag{20}
\end{equation*}
$$

where $T_{i}, X, N ; g, g_{X}, g_{N}$ and $A_{i \mu}, B_{\mu}, C_{\mu}$ are the generators, the gauge couplings and the fields of the gauge groups $S U(3)_{L}, U(1)_{X}$, and $U(1)_{N}$, respectively; $T_{i}=\lambda_{i} / 2, i=1,2, \ldots 8, \lambda_{i}$ are the Gell-Mann matrices.

The matrix $A_{i \mu} T_{i}$ can be written as follows:

$$
A_{\mu}=A_{i \mu} T_{i}=\frac{1}{2} \times\left(\begin{array}{ccc}
A_{3 \mu}+\frac{A_{8 \mu}}{\sqrt{3}} & \sqrt{2} W_{\mu}^{+} & \sqrt{2} X_{\mu}^{+Q_{x}} \tag{21}\\
\sqrt{2} W_{\mu}^{-} & -A_{3 \mu}+\frac{A_{8 \mu}}{\sqrt{3}} & \sqrt{2} Y_{\mu}^{+Q_{\gamma}} \\
\sqrt{2} X_{\mu}^{-Q_{x}} & \sqrt{2} Y_{\mu}^{-Q_{\gamma}} & -\frac{2 A_{8 \mu}}{\sqrt{3}}
\end{array}\right),
$$

Where

$$
\begin{gather*}
W^{\mp}=\frac{A_{1} \pm i A_{2}}{\sqrt{2}}, \quad X^{\mp Q_{X}}=\frac{A_{4} \pm i A_{5}}{\sqrt{2}}, \quad Y^{\mp Q_{Y}}=\frac{A_{6} \pm i A_{7}}{\sqrt{2}} . \tag{22}\\
{\left[Q, A_{\mu}\right]=Q \cdot A_{\mu}-A_{\mu} \cdot Q=Q_{A} A_{\mu}, Q_{A}=\left(\begin{array}{ccc}
0 & 1 & 1 \\
-1 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right) .} \tag{23}
\end{gather*}
$$

Therefore, $Q_{X}=1, Q_{Y}=0$, hence the new gauge bosons X and Y are singly charged and neutral, respectively.

The charged currents are defined as

$$
P_{\mu}^{C C}=\frac{1}{\sqrt{2}} \times\left(\begin{array}{ccc}
0 & W^{+} & X^{+} \tag{24}\\
W^{-} & 0 & Y^{0^{*}} \\
X^{-} & Y^{0} & 0
\end{array}\right),
$$

the mass terms of the non-Hermitian gauge bosons are obtained as

$$
\begin{equation*}
\mathcal{L}_{\text {mass }}^{\text {charged }}=\frac{1}{4} g^{2}\left(u^{2}+v^{2}\right) W^{+} W^{-}+\frac{1}{4} g^{2}\left(u^{2}+w^{2}\right) X^{+} X^{-}+\frac{1}{4} g^{2}\left(v^{2}+w^{2}\right) Y^{0} Y^{0^{*}}, \tag{25}
\end{equation*}
$$

from then we can identify their masses as follows:

$$
\begin{equation*}
m_{W}^{2}=\frac{1}{4} g^{2}\left(u^{2}+v^{2}\right), \quad m_{X}^{2}=\frac{1}{4} g^{2}\left(u^{2}+w^{2}\right), \quad m_{Y}^{2}=\frac{1}{4} g^{2}\left(v^{2}+w^{2}\right) . \tag{26}
\end{equation*}
$$

We consider W as the SM's W boson (the SM-like gauge boson), so

$$
\begin{equation*}
u^{2}+v^{2}=v_{w}^{2}=(246 \mathrm{GeV})^{2} . \tag{27}
\end{equation*}
$$

The mass Lagrangian of neutral gauge bosons is given by

$$
\begin{align*}
& \mathcal{L}_{\text {mass }}^{\text {neural }}=\frac{u^{2} g^{2}}{24}\left(A_{3 \mu}+\frac{A_{8 \mu}}{\sqrt{3}}-\frac{2}{3} t_{X} B_{\mu}+\frac{2}{3} t_{N} C_{\mu}\right)^{2}+\frac{v^{2} g^{2}}{24}\left(-A_{3 \mu}+\frac{A_{8 \mu}}{\sqrt{3}}+\frac{2}{3} t_{X} B_{\mu}+\frac{2}{3} t_{N} C_{\mu}\right)^{2} \\
& +\frac{w^{2} g^{2}}{6}\left(-\frac{A_{8 \mu}}{\sqrt{3}}-\frac{1}{3} t_{X} B_{\mu}+\frac{2}{3} t_{N} C_{\mu}\right)^{2}+2 g^{2} t_{N}^{2} w^{\prime} C_{\mu}=\frac{1}{2} V^{T} M^{2} V, \tag{28}
\end{align*}
$$

where $V^{T}=A_{3} A_{8} B C$ and

$$
M^{2}=\frac{g^{2}}{2} \times\left(\begin{array}{cccc}
\frac{1}{2}\left(u^{2}+v^{2}\right) & \frac{u^{2}-v^{2}}{2 \sqrt{3}} & -\frac{t_{X}\left(2 u^{2}+v^{2}\right)}{3} & \frac{t_{N}\left(u^{2}-v^{2}\right)}{3} \\
\frac{u^{2}-v^{2}}{2 \sqrt{3}} & \frac{1}{6}\left(u^{2}+v^{2}+4 w^{2}\right) & -\frac{t_{X}\left(2 u^{2}-v^{2}+2 w^{2}\right)}{3 \sqrt{3}} & \frac{t_{N}\left(u^{2}+v^{2}+4 w^{2}\right)}{3 \sqrt{3}} \\
-\frac{t_{X}\left(2 u^{2}+v^{2}\right)}{3} & -\frac{t_{X}\left(2 u^{2}-v^{2}+2 w^{2}\right)}{3 \sqrt{3}} & \frac{2}{9} t_{X}^{2}\left(4 u^{2}+v^{2}+w^{2}\right) & -\frac{2}{9} t_{X} t_{N}\left(2 u^{2}-v^{2}+2 w^{2}\right) \\
\frac{t_{N}\left(u^{2}-v^{2}\right)}{3} & \frac{t_{N}\left(u^{2}+v^{2}+4 w^{2}\right)}{3 \sqrt{3}} & -\frac{2}{9} t_{X} t_{N}\left(2 u^{2}-v^{2}+2 w^{2}\right) & \frac{2}{9} t_{N}^{2}\left(u^{2}+v^{2}+4 w^{2}+36 w^{12}\right)
\end{array}\right) \text {, }
$$

where the mass matrix M^{2} is symmetric, $t_{X}=g_{X} / g=\sqrt{3} \sin \theta_{W} / \sqrt{3-4 \sin ^{2} \theta_{W}}, \sin \theta_{W}$ is the sine of the Weinberg angle, which can explicitly be identified from the electromagnetic interaction vertices and $t_{N}=g_{N} / g$.

The mass matrix M^{2} has a zero eigenvalue ($m_{A}=0$) which is set as the photon's mass with corresponding eigenstate

$$
\begin{equation*}
A=\frac{\sqrt{3} t_{X}}{\sqrt{3+4 t_{X}^{2}}} A_{3}+\frac{t_{X}}{\sqrt{3+4 t_{X}^{2}}} A_{8}+\frac{\sqrt{3}}{\sqrt{3+4 t_{X}^{2}}} B . \tag{29}
\end{equation*}
$$

We can define the SM's Z boson and a new Z ' boson as follows:

$$
\begin{align*}
Z & =\frac{\sqrt{3+t_{X}^{2}}}{\sqrt{3+4 t_{X}^{2}}} A_{3}-\frac{\sqrt{3} t_{X}^{2}}{\sqrt{3+t_{X}^{2}} \sqrt{3+4 t_{X}^{2}}} A_{8}-\frac{3 t_{X}}{\sqrt{3+t_{X}^{2}} \sqrt{3+4 t_{X}^{2}}} B \tag{31}\\
Z^{\prime} & =\frac{\sqrt{3}}{\sqrt{3+t_{X}^{2}}} A_{8}-\frac{t_{X}}{\sqrt{3+t_{X}^{2}}} B
\end{align*}
$$

which are orthogonally to A, as usual. At this stage, C is always orthogonal to A, Z, and Z^{\prime}. Let us change to the new basis $\left(A_{3}, A_{8}, B, C\right) \rightarrow\left(A, Z, Z^{\prime}, C^{\prime}\right)$,

$$
\left(\begin{array}{l}
A_{3} \tag{32}\\
A_{8} \\
B \\
C
\end{array}\right)=U_{1}\left(\begin{array}{c}
A \\
Z \\
Z^{\prime} \\
C^{\prime}
\end{array}\right), \quad U_{1}=\left(\begin{array}{cccc}
\frac{\sqrt{3} t_{X}}{\sqrt{3+4 t_{X}^{2}}} & \frac{\sqrt{3+t_{X}^{2}}}{\sqrt{3+4 t_{X}^{2}}} & 0 & 0 \\
\frac{t_{X}}{\sqrt{3+4 t_{X}^{2}}} & -\frac{\sqrt{3} t_{X}^{2}}{\sqrt{3+t_{X}^{2}} \sqrt{3+4 t_{X}^{2}}} & \frac{\sqrt{3}}{\sqrt{3+t_{X}^{2}}} & 0 \\
\frac{\sqrt{3}}{\sqrt{3+4 t_{X}^{2}}} & -\frac{3 t_{X}}{\sqrt{3+t_{X}^{2}} \sqrt{3+4 t_{X}^{2}}} & -\frac{t_{X}}{\sqrt{3+t_{X}^{2}}} & 0 \\
0 & 0 & 0 & 1
\end{array}\right) .
$$

In the new basis, the mass matrix M^{2} becomes

$$
M_{1}^{2}=U_{1}^{T} M^{2} U_{1}=\left(\begin{array}{cc}
0 & 0 \tag{33}\\
0 & M_{s}^{2}
\end{array}\right), \quad M_{s}^{2} \equiv\left(\begin{array}{ccc}
m_{Z}^{2} & m_{Z Z^{\prime}}^{2} & m_{Z C^{\prime}}^{2} \\
m_{Z Z^{\prime}}^{2} & m_{Z^{\prime}}^{2} & m_{Z^{\prime} C^{\prime}}^{2} \\
m_{Z C^{\prime}}^{2} & m_{Z^{\prime} C^{\prime}}^{2} & m_{C^{\prime}}^{2}
\end{array}\right)
$$

We see that the photon field is physical and decoupled, while $Z, Z^{\prime}, C^{\prime}$ mix via the 3×3 mass submatrix M_{s}^{2} with the elements given by

$$
\begin{aligned}
m_{Z}^{2} & =\frac{g^{2}\left(3+4 t_{X}^{2}\right)\left(u^{2}+v^{2}\right)}{4\left(3+t_{X}^{2}\right)}, \quad m_{Z Z^{\prime}}^{2}=\frac{g^{2} \sqrt{3+4 t_{X}^{2}}\left[\left(3+4 t_{X}^{2}\right) u^{2}-\left(3-2 t_{X}^{2}\right) v^{2}\right]}{12\left(3+t_{X}^{2}\right)}, \\
m_{Z C^{\prime}}^{2} & =\frac{g^{2} t_{N} \sqrt{3+4 t_{X}^{2}}\left(u^{2}-v^{2}\right)}{6 \sqrt{3+t_{X}^{2}}}, \quad m_{Z^{\prime}}^{2}=\frac{g^{2}\left[\left(3+4 t_{X}^{2}\right)^{2} u^{2}+\left(3-2 t_{X}^{2}\right)^{2} v^{2}+4\left(3+t_{X}^{2}\right)^{2} w^{2}\right]}{36\left(3+t_{X}^{2}\right)}, \\
m_{Z^{\prime} C^{\prime}}^{2} & =\frac{g^{2} t_{N}^{2}\left[\left(3+4 t_{X}^{2}\right) u^{2}+\left(3-2 t_{X}^{2}\right) v^{2}+4\left(3+t_{X}^{2}\right) w^{2}\right]}{18 \sqrt{3+t_{X}^{2}}}, \quad m_{C^{\prime}}^{2}=\frac{g^{2} t_{N}^{2}}{9}\left(u^{2}+v^{2}+4 w^{2}+36 w^{\prime 2}\right) .
\end{aligned}
$$

Because of the condition $u, v \ll w, w^{\prime}$, we have $m_{Z}^{2}, m_{Z Z^{\prime}}^{2}, m_{Z C^{\prime}}^{2} \ll m_{Z^{\prime}}^{2}, m_{Z^{\prime} C^{\prime}}^{2}, m_{C^{\prime}}^{2}$ and the mixing of Z with the new Z^{\prime} and C^{\prime} is negligible. Hence, the Z boson can be considered as a physical particle with mass,

$$
\begin{equation*}
m_{z_{1}}^{2} \simeq \frac{g^{2}\left(3+4 t_{X}^{2}\right)\left(u^{2}+v^{2}\right)}{4\left(3+t_{X}^{2}\right)} \simeq \frac{g^{2}}{4 \cos ^{2} \theta_{W}}\left(u^{2}+v^{2}\right) \tag{34}
\end{equation*}
$$

The fields Z^{\prime} and C^{\prime} finitely mix via a mass matrix obtained by

$$
M_{s}^{\prime 2} \simeq\left(\begin{array}{cc}
m_{Z^{\prime}}^{2} & m_{Z^{\prime} C^{\prime}}^{2} \tag{35}\\
m_{Z^{\prime} C^{\prime}}^{2} & m_{C^{\prime}}^{2}
\end{array}\right)
$$

$$
\left(\begin{array}{l}
A \tag{36}\\
Z_{1} \\
Z^{\prime} \\
C^{\prime}
\end{array}\right)=U_{2}\left(\begin{array}{c}
A \\
Z_{1} \\
Z_{2} \\
Z_{3}
\end{array}\right), \quad U_{2}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \varphi & \sin \varphi \\
0 & 0 & -\sin \varphi & \cos \varphi
\end{array}\right), \quad M_{2}^{2}=U_{2}^{T} M_{s}^{\prime 2} U_{2}=\operatorname{Diag} .\left(0, m_{Z_{1}}^{2}, m_{Z_{2}}^{2}, m_{Z_{3}}^{2}\right) .
$$

The Z^{\prime} and C^{\prime} mixing angle and Z_{2}, Z_{3} masses are given by

$$
\begin{gather*}
\tan (2 \varphi) \simeq \frac{4 \sqrt{3+t_{X}^{2}} t_{N} w^{2}}{4 t_{N}^{2}\left(9 w^{\prime 2}+w^{2}\right)-\left(3+t_{X}^{2}\right) w^{2}}, \tag{37}\\
m_{Z_{2}, z_{3}}^{2}=\frac{1}{2}\left[m_{Z^{\prime}}^{2}+m_{C^{\prime}}^{2} \mp \sqrt{\left(m_{Z^{\prime}}^{2}-m_{C^{\prime}}^{2}\right)^{2}+4 m_{Z^{\prime} C^{\prime}}^{4}}\right] . \tag{38}
\end{gather*}
$$

We can see that, Z_{2}, Z_{3} getting masses at the w scale so that we classify them as the new neutral gauge bosons.

It is worth to note that, the ρ-parameter (or $\Delta \rho=\rho-1$) is receiving the contributions from two distinct sources, denoted as $\Delta \rho=\Delta \rho_{\text {tree }}+\Delta \rho_{\text {rad }}$, where the first term resulted from the contributions of the tree-level mixing of Z with Z^{\prime} and C^{\prime}. The second term originated from the dominant, radiative corrections of a heavy non-Hermitian gauge doublet X and Y, similarly to the 3-3-1 model case [12, 1517]

$$
\begin{gather*}
\Delta \rho_{\text {tree }}=\frac{m_{W}^{2}}{\cos ^{2} \theta_{W} m_{Z_{1}}^{2}}-1=\frac{m_{Z}^{2}}{m_{Z Z^{\prime}}^{2}} m_{Z C^{\prime}}^{2}\left(\begin{array}{cc}
m_{Z^{\prime}}^{2} & m_{Z^{\prime} \prime^{\prime}}^{2} \\
m_{Z^{\prime} C^{\prime}}^{2} & m_{C^{\prime}}^{2}
\end{array}\right)^{-1}\binom{m_{Z Z Z^{\prime}}^{2}}{m_{Z C^{\prime}}^{2}} \tag{39}\\
\text { where } \quad m_{Z_{1}}^{2} \simeq m_{Z}^{2}-m_{Z Z^{\prime}}^{2} \quad m_{Z C^{\prime}}^{2}\left(\begin{array}{cc}
m_{Z^{\prime}}^{2} & m_{Z^{\prime} \prime^{\prime}}^{2} \\
m_{Z^{\prime} C^{\prime}}^{2} & m_{C^{\prime}}^{2}
\end{array}\right)^{-1}\binom{m_{Z Z^{\prime}}^{2}}{m_{Z C^{\prime}}^{2}} . \tag{40}
\end{gather*}
$$

The explicit results of $\Delta \rho_{\text {tre }}$ and $\Delta \rho_{\text {rad }}$ are obtained as

$$
\begin{align*}
\Delta \rho_{\text {tre }} & \simeq \frac{1}{m_{Z}^{2}} m_{Z Z^{\prime}}^{2} \\
m_{Z C^{\prime}}^{2} & \left(\begin{array}{cc}
m_{Z^{\prime}}^{2} & m_{Z C^{\prime}}^{2} \\
m_{Z^{\prime} C^{\prime}}^{2} & m_{C^{\prime}}^{2}
\end{array}\right)^{-1}\binom{m_{Z Z^{\prime}}^{2}}{m_{Z C^{\prime}}^{2}} \tag{41}\\
& \simeq \frac{\left[u^{2}-\left(1-2 \sin ^{2} \theta_{W}\right) v^{2}\right]^{2}}{4\left(1-\sin ^{2} \theta_{W}\right)\left(u^{2}+v^{2}\right) w^{2}}+\frac{1}{36}\left(\frac{\sin ^{2} \theta_{W}}{1-\sin ^{2} \theta_{W}}\right)^{2} \frac{\left(u^{2}+v^{2}\right)}{w^{\prime 2}}, \\
\Delta \rho_{\text {rad }} & =\frac{3 \sqrt{2} G_{F}}{16 \pi^{2}}\left(m_{X}^{2}+m_{Y}^{2}-\frac{2 m_{X}^{2} m_{Y}^{2}}{m_{Y}^{2}-m_{X}^{2}} \ln \frac{m_{Y}^{2}}{m_{X}^{2}}\right) \tag{42}\\
& +\frac{\alpha}{4 \pi^{2} \sin ^{2} \theta_{W}}\left(\frac{m_{X}^{2}+m_{Y}^{2}}{m_{Y}^{2}-m_{X}^{2}} \ln \frac{m_{Y}^{2}}{m_{X}^{2}}-2-\frac{\sin ^{2} \theta_{W}}{1-\sin ^{2} \theta_{W}} \ln \frac{m_{Y}^{2}}{m_{X}^{2}}\right),
\end{align*}
$$

where $\alpha \simeq \frac{1}{128}, \sin ^{2} \theta_{W}=0.231, \rho=1.00039 \pm 0.00019$ [18], and $G_{F}=\frac{1}{\sqrt{2}\left(u^{2}+v^{2}\right)}, g^{2}=\frac{2 \pi \alpha}{\sin ^{2} \theta_{W}}$, $u^{2}+v^{2}=(246 \mathrm{GeV})^{2}, m_{W}^{2}=\frac{1}{4} g^{2}\left(u^{2}+v^{2}\right), m_{X}^{2}=\frac{1}{4} g^{2}\left(u^{2}+w^{2}\right), m_{Y}^{2}=\frac{1}{4} g^{2}\left(v^{2}+w^{2}\right)$.

We can see, from Eq. (41), if $w^{\prime} \gg w$ then $\Delta \rho$ contains only (u, v, w) leading that $\Delta \rho$ is analogous with that of 3-3-1 model with $\beta=1 / \sqrt{3}$. If $w^{\prime} \sim w$ then $\Delta \rho$ depends on all energy scales ($\left.u, v, w, w^{\prime}\right)$, in this case, for simplicity, we set $w^{\prime}=w$ for numerical investigation. Using the condition $v^{2}=(246 \mathrm{GeV})^{2}-u^{2}$, then $\Delta \rho$ becomes a function of two parameters (u, w). Let $0 \leq u \leq 246 \mathrm{GeV}$, we make the contour plot of $\Delta \rho$ constrained by the experimental data ($0.0002 \leq \Delta \rho \leq 0.00058$) [18] in order to find the allowed values of the new physics scale w. The results are plotted in Figure 1 (left panel) for the case of $w^{\prime} \gg w$ and for the case of $w^{\prime}=w$ in the right panel. We can see that, the scale of new physics w in both cases are almost similar, that is about several TeV hence the new physics of the model, if it exists, could be detected by the LHC.

Figure 1. The (u, w) regime that is bounded by the $\Delta \rho$ parameter $(0.0002 \leq \Delta \rho \leq 0.00058)$
for $w^{\prime} \gg w$ (left panel), for $w^{\prime}=w$ (right panel).

5. Higgs Sector

The most general form of the Higgs potential can then be written as

$$
\begin{align*}
V(\eta, \rho, \chi, \phi)= & \mu_{1}^{2} \eta^{\dagger} \eta+\mu_{2}^{2} \rho^{\dagger} \rho+\mu_{3}^{2} \chi^{\dagger} \chi+\mu_{4}^{2} \phi^{\dagger} \phi+\lambda_{1}\left(\eta^{\dagger} \eta\right)^{2}+\lambda_{2}\left(\rho^{\dagger} \rho\right)^{2}+\lambda_{3}\left(\chi^{\dagger} \chi\right)^{2} \\
& +\lambda_{4}\left(\phi^{\dagger} \phi\right)^{2}+\lambda_{5}\left(\eta^{\dagger} \eta\right)\left(\rho^{\dagger} \rho\right)+\lambda_{6}\left(\eta^{\dagger} \eta\right)\left(\chi^{\dagger} \chi\right)+\lambda_{7}\left(\rho^{\dagger} \rho\right)\left(\chi^{\dagger} \chi\right) \\
& +\lambda_{8}\left(\phi^{\dagger} \phi\right)\left(\eta^{\dagger} \eta\right)+\lambda_{9}\left(\phi^{\dagger} \phi\right)\left(\rho^{\dagger} \rho\right)+\lambda_{10}\left(\phi^{\dagger} \phi\right)\left(\chi^{\dagger} \chi\right)+\lambda_{11}\left(\eta^{\dagger} \rho\right)\left(\rho^{\dagger} \eta\right) \tag{43}\\
& +\lambda_{12}\left(\eta^{\dagger} \chi\right)\left(\chi^{\dagger} \eta\right)+\lambda_{13}\left(\rho^{\dagger} \chi\right)\left(\chi^{\dagger} \rho\right)+\left(\mu \varepsilon^{i j k} \eta_{i} \rho_{j} \chi_{k}+H . c .\right) .
\end{align*}
$$

We expand the fields around Higgs' VEVs such as

$$
\begin{gather*}
\eta=\left(\begin{array}{ccc}
\frac{u}{\sqrt{2}} & 0 & 0
\end{array}\right)^{T}+\left(\begin{array}{lll}
\frac{S_{1}+i A_{1}}{\sqrt{2}} & \eta_{2}^{-} & \eta_{3}^{-}
\end{array}\right)^{T}, \rho=\left(\begin{array}{lll}
0 & \frac{v}{\sqrt{2}} & 0
\end{array}\right)^{T}+\left(\begin{array}{ll}
\rho_{1}^{+} & \frac{S_{2}+i A_{2}}{\sqrt{2}} \\
\frac{S_{3}+i A_{3}}{\sqrt{2}}
\end{array}\right)^{T} \tag{44}\\
\chi=\left(\begin{array}{lll}
0 & 0 & \frac{w}{\sqrt{2}}
\end{array}\right)^{T}+\left(\begin{array}{lll}
\chi_{1}^{+} & \frac{S_{4}+i A_{4}}{\sqrt{2}} & \frac{S_{5}+i A_{5}}{\sqrt{2}}
\end{array}\right)^{T}, \quad \phi=\frac{w^{\prime}}{\sqrt{2}}+\frac{S_{6}+i A_{6}}{\sqrt{2}} \tag{45}
\end{gather*}
$$

The constraint equations derived from the stationary condition of the scalar potential are given as

$$
\begin{gather*}
\mu_{1}^{2}=-\frac{1}{2}\left(\lambda_{8} w^{\prime 2}+2 \lambda_{1} u^{2}+\lambda_{5} v^{2}+\lambda_{6} w^{2}+\frac{\sqrt{2} \mu v w}{u}\right), \tag{44}\\
\mu_{2}^{2}=-\frac{1}{2}\left(\lambda_{9} w^{\prime 2}+2 \lambda_{2} v^{2}+\lambda_{5} u^{2}+\lambda_{7} w^{2}+\frac{\sqrt{2} \mu u w}{v}\right), \tag{45}\\
\mu_{3}^{2}=-\frac{1}{2}\left(\lambda_{10} w^{\prime 2}+2 \lambda_{3} w^{2}+\lambda_{6} u^{2}+\lambda_{7} v^{2}+\frac{\sqrt{2} \mu u v}{w}\right), \tag{46}\\
\mu_{4}^{2}=-\frac{1}{2} 2 \lambda_{4} w^{\prime 2}+\lambda_{8} u^{2}+\lambda_{9} v^{2}+\lambda_{10} w^{2} . \tag{47}
\end{gather*}
$$

For the neutral scalar fields $A_{1}, A_{2}, A_{5}, A_{6}$ we find out as

$$
\begin{equation*}
\mathcal{L}_{\text {mass }}^{A_{\text {nas }}}=-\frac{1}{2} \frac{\mu\left[v^{2} w^{2}+u^{2}\left(v^{2}+w^{2}\right)\right]}{\sqrt{2} u v w}\left(\frac{v w A_{1}+u w A_{2}+v u A_{5}}{\sqrt{u^{2} w^{2}+v^{2} w^{2}+u^{2} v^{2}}}\right)^{2} . \tag{48}
\end{equation*}
$$

From this we identify a physical state (physical pseudoscalar) and its's mass as

$$
\begin{equation*}
A_{P} \equiv \frac{v w A_{1}+u w A_{2}+v u A_{5}}{\sqrt{u^{2} w^{2}+v^{2} w^{2}+u^{2} v^{2}}}, m_{A_{p}}^{2}=-\frac{\mu\left[v^{2} w^{2}+u^{2}\left(v^{2}+w^{2}\right)\right]}{\sqrt{2} u v w} . \tag{49}
\end{equation*}
$$

Two other fields are massless that are identified as the Goldstone bosons of Z and Z_{1} :

$$
\begin{equation*}
G_{Z} \equiv \frac{-u A_{1}+v A_{2}}{\sqrt{u^{2}+v^{2}}}, \quad G_{Z_{1}} \equiv \frac{-u v\left(v A_{1}+u A_{2}\right)+w\left(u^{2}+v^{2}\right) A_{5}}{\sqrt{\left(u^{2} v^{2}+u^{2} w^{2}+w^{2} v^{2}\right)\left(u^{2}+v^{2}\right)}} . \tag{50}
\end{equation*}
$$

The pseudoscalar A_{6} is massless and is identified to the Goldstone boson of Z_{2}.
For the neutral scalar fields A_{3}, A_{4}, we find

$$
\begin{equation*}
\mathcal{L}_{\text {mass }}^{A_{34}}=\frac{1}{2}\left(\frac{\lambda_{13}}{2}-\frac{\sqrt{2}}{2} \frac{\mu u}{v w}\right)\left(v^{2}+w^{2}\right)\left(\frac{-w A_{3}+v A_{4}}{\sqrt{v^{2}+w^{2}}}\right)^{2}, \tag{51}
\end{equation*}
$$

where we can define the physical state and its' corresponding mass as

$$
\begin{equation*}
A_{34} \equiv \frac{-w A_{3}+v A_{4}}{\sqrt{v^{2}+w^{2}}}, m_{A_{34}}^{2}=\left(\frac{\lambda_{13}}{2}-\frac{\sqrt{2}}{2} \frac{\mu u}{v w}\right)\left(v^{2}+w^{2}\right) . \tag{52}
\end{equation*}
$$

For the neutral scalar fields $S_{1}, S_{2}, S_{5}, S_{6}$, we define $\quad \mathcal{L}_{\text {mass }}^{S_{156}}=\frac{1}{2} S^{T} M_{S_{1256}}^{2} S$,
where $S^{T}=S_{1} S_{2} S_{5} S_{6}$ and

$$
M_{S_{125}}^{2} \equiv\left(\begin{array}{cccc}
2 \lambda_{1} u^{2}-\frac{\mu v w}{\sqrt{2} u} & \lambda_{5} u v+\frac{\mu w}{\sqrt{2}} & \lambda_{6} u w+\frac{\mu v}{\sqrt{2}} & \lambda_{8} u w^{\prime} \tag{54}\\
\lambda_{5} u v+\frac{\mu w}{\sqrt{2}} & 2 \lambda_{2} v^{2}-\frac{\mu w w}{\sqrt{2} v} & \lambda_{7} v w+\frac{\mu u}{\sqrt{2}} & \lambda_{9} v w^{\prime} \\
\lambda_{6} u w+\frac{\mu v}{\sqrt{2}} & \lambda_{7} v w+\frac{\mu u}{\sqrt{2}} & 2 \lambda_{3} w^{2}-\frac{\mu v u}{\sqrt{2} w} & \lambda_{10} w w^{\prime} \\
\lambda_{8} u w^{\prime} & \lambda_{9} v w^{\prime} & \lambda_{10} w w^{\prime} & 2 \lambda_{4} w^{\prime 2}
\end{array}\right) .
$$

Using conditions $u, v \ll w, w^{\prime}$, we have

$$
\begin{align*}
& M_{1 S}^{2} \equiv\left(\begin{array}{cccc}
-\frac{\mu v w}{\sqrt{2}} & \frac{\mu w}{\sqrt{2}} & 0 & 0 \\
\frac{\mu w}{\sqrt{2}} & -\frac{\mu u w}{\sqrt{2} v} & 0 & 0 \\
0 & 0 & 2 \lambda_{3} w^{2} & \lambda_{10} w w^{\prime} \\
0 & 0 & \lambda_{10} w w^{\prime} & 2 \lambda_{4} w^{\prime 2}
\end{array}\right), \tag{55}\\
& m_{S_{H_{1}}}^{2}=0, \quad H_{1} \equiv \frac{u S_{1}+v S_{2}}{\sqrt{u^{2}+v^{2}}}, \tag{56}\\
& m_{S_{H_{2}}}^{2}=-\frac{\mu w\left(u^{2}+v^{2}\right)}{\sqrt{2} u v}, \quad H_{2} \equiv \frac{-v S_{1}+u S_{2}}{\sqrt{u^{2}+v^{2}}}, \tag{57}\\
& m_{S_{H_{5}}}^{2}=\lambda_{4} w^{\prime 2}+\lambda_{3} w^{2}+\sqrt{\lambda_{3}^{2} w^{4}+\left(\lambda_{10}^{2}-2 \lambda_{3} \lambda_{4}\right) w^{2} w^{\prime 2}+\lambda_{4}^{2} w^{\prime 4}}, \tag{58}\\
& m_{S_{H_{6}}}^{2}=\lambda_{4} w^{\prime 2}+\lambda_{3} w^{2}-\sqrt{\lambda_{3}^{2} w^{4}+\left(\lambda_{10}^{2}-2 \lambda_{3} \lambda_{4}\right) w^{2} w^{\prime 2}+\lambda_{4}^{2} w^{\prime 4}}, \tag{59}
\end{align*}
$$

where

$$
\begin{gather*}
H_{5} \equiv \cos \phi S_{5}+\sin \phi S_{6}, \quad H_{6} \equiv-\sin \phi S_{5}+\cos \phi S_{6}, \tag{60}\\
\tan (2 \phi)=\frac{\lambda_{10} w w^{\prime}}{\lambda_{3} w^{2}-\lambda_{4} w^{\prime 2}} . \tag{61}
\end{gather*}
$$

To diagonalize $M_{S_{1256}}^{2}$, we transform to a new basis as:

$$
S=U\left(\begin{array}{l}
H_{1} \tag{62}\\
H_{2} \\
H_{5} \\
H_{6}
\end{array}\right), \quad U \equiv\left(\begin{array}{cccc}
\frac{u}{\sqrt{u^{2}+v^{2}}} & -\frac{v}{\sqrt{u^{2}+v^{2}}} & 0 & 0 \\
\frac{v}{\sqrt{u^{2}+v^{2}}} & \frac{u}{\sqrt{u^{2}+v^{2}}} & 0 & 0 \\
0 & 0 & \cos \phi & -\sin \phi \\
0 & 0 & \sin \phi & \cos \phi
\end{array}\right), \quad M^{2}=U^{T} M_{S_{1236}}^{2} U .
$$

At this stage, M^{2} has the seesaw form matrix. Diagonalizing this matrix due to the seesaw mechanism [19-22], we obtain the Higgs boson with the mass as follows:

$$
\begin{equation*}
m_{h}^{2}=2\left(\frac{u^{4} \lambda_{1}+v^{4} \lambda_{2}+u^{2} v^{2} \lambda_{5}}{u^{2}+v^{2}}+m_{0}^{2}+m_{1}^{2} \frac{\mu}{w}+m_{2}^{2} \frac{\mu^{2}}{w^{2}}\right), \tag{63}
\end{equation*}
$$

where

$$
\begin{aligned}
& m_{0}^{2}=-\frac{1}{\lambda_{10}^{2}-4 \lambda_{3} \lambda_{4} u^{2}+v^{2}}\left[-\lambda_{4} \lambda_{6} u^{2}+\lambda_{7} v^{2}-\lambda_{3} \lambda_{8} u^{2}+\lambda_{9} v^{2}+\lambda_{10} \lambda_{6} u^{2}+\lambda_{7} v^{2} \lambda_{8} u^{2}+\lambda_{9} v^{2}\right] ; \\
& m_{1}^{2}=-\frac{\sqrt{2} u v\left[\lambda_{8} \lambda_{10}-2 \lambda_{4} \lambda_{6} u^{2}+\lambda_{9} \lambda_{10}-2 \lambda_{4} \lambda_{7} v^{2}\right]}{\lambda_{10}^{2}-4 \lambda_{3} \lambda_{4} u^{2}+v^{2}} ; \quad m_{2}^{2}=\frac{2 u^{2} v^{2} \lambda_{4}}{\lambda_{10}^{2}-4 \lambda_{3} \lambda_{4} u^{2}+v^{2}} .
\end{aligned}
$$

Because w and μ have the same order so m_{h} has the order of u, hence we can identify h as the

SM's Higgs, namely the SM-like Higgs boson.
Since $u \sim v \ll w \sim-\mu, u=v, w=-\mu$, we can simplify the above expressions as

$$
\begin{align*}
& m_{0}^{2} \equiv f_{0}(\lambda) u^{2}, \quad m_{1}^{2}=f_{1}(\lambda) u^{2}, \quad m_{2}^{2}=f_{2}(\lambda) u^{2} \\
& m_{h}^{2}=\lambda_{1}+\lambda_{2}+\lambda_{5} u^{2}+2 m_{0}^{2}-2 m_{1}^{2}+2 m_{2}^{2}=f(\lambda) u^{2} \tag{64}
\end{align*}
$$

where $f_{0}(\lambda), f_{1}(\lambda), f_{2}(\lambda), f(\lambda)$ are functions of only the λ 's couplings. Using the Higgs mass $m_{h}=125 \mathrm{GeV}[23,24]$ and $u=\frac{246}{\sqrt{2}} \mathrm{GeV}$, we can estimate that $f_{i}(\lambda) \simeq 0.52$.

For the neutral scalar fields S_{3}, S_{4}, we have

$$
\begin{equation*}
\mathcal{L}_{\text {mass }}^{\mathrm{S}_{34}}=\frac{1}{4} \lambda_{13} v w-\sqrt{2} \mu u \frac{v^{2}+w^{2}}{v w}\left(\frac{w S_{3}+v S_{4}}{\sqrt{v^{2}+w^{2}}}\right)^{2} \tag{65}
\end{equation*}
$$

from this, we define a physical state and its mass as

$$
\begin{equation*}
m_{S_{34}}^{2}=\frac{1}{2} \lambda_{13} v w-\sqrt{2} \mu u \frac{v^{2}+w^{2}}{v w}, \quad S_{34} \equiv \frac{w S_{3}+v S_{4}}{\sqrt{v^{2}+w^{2}}} \tag{66}
\end{equation*}
$$

For charged scalars, we derive as

$$
\begin{equation*}
\mathcal{L}_{\text {mass }}^{\text {charged }}=\frac{1}{2} \lambda_{11} u v-\sqrt{2} \mu w \frac{u^{2}+v^{2}}{u v} H_{1}^{+} H_{1}^{-}+\frac{1}{2} \lambda_{12} u w-\sqrt{2} \mu v \frac{u^{2}+w^{2}}{u w} H_{2}^{+} H_{2}^{-}, \tag{67}
\end{equation*}
$$

where the two charged Higgses and their masses are identified as

$$
\begin{align*}
& H_{1}^{ \pm}=\frac{v \eta_{2}^{ \pm}+u \rho_{1}^{ \pm}}{\sqrt{u^{2}+v^{2}}}, \quad H_{2}^{ \pm}=\frac{w \eta_{3}^{ \pm}+u \rho_{1}^{ \pm}}{\sqrt{u^{2}+w^{2}}} . \tag{68}\\
& m_{H_{1}^{ \pm}}^{2}=\frac{1}{2} \lambda_{11} u v-\sqrt{2} \mu w\left(\frac{u^{2}+v^{2}}{u v}\right), \quad m_{H_{2}^{ \pm}}^{2}=\frac{1}{2} \lambda_{12} u w-\sqrt{2} \mu v\left(\frac{u^{2}+w^{2}}{u w}\right) . \tag{69}
\end{align*}
$$

Besides, we also find the Goldstone bosons of W and Y bosons as

$$
\begin{equation*}
G_{W^{ \pm}}=\frac{u \eta_{2}^{ \pm}-v \rho_{1}^{ \pm}}{\sqrt{u^{2}+v^{2}}}, \quad G_{X^{ \pm}}=\frac{u \eta_{3}^{ \pm}-w \rho_{1}^{ \pm}}{\sqrt{u^{2}+w^{2}}} \tag{70}
\end{equation*}
$$

6. Conclusion

In this study, we proposed a new version of 3-3-1-1 model where a new charged lepton for each generation is introduced. The new model can solve the remaining problems of the old versions of 3-3-1-1 model such as the limit of new physics energy scale due to the Landau pole. In this work, fermion, gauge boson and Higgs sectors were studied in detail. We identified all fermions of the SM as well as their masses. The model predicted new charged quarks and charged leptons beyond the SM. These particles received masses on a new physical scale of TeV which was estimated from the ρ parameter. The masses of Dirac and Majorana neutrinos were also determined.

For the gauge boson part, we identified not only the SM's bosons $W^{ \pm}, Z$, and photon A but also six new gauge bosons $X^{ \pm}, Y^{0,0^{*}}, Z_{2}$ and , of which, Z_{2}, Z_{3} received masses on a new physical scale. In order to reproduce the SM's $W^{ \pm}$boson mass, we constrained $u^{2}+v^{2}=246 \mathrm{GeV}^{2}$. For the Higgs region, we identified the Higgs spectrum of the model, in which, h was identical to the Higgs in the SM. Using the SM-like Higgs mass, $m_{h}=125 \mathrm{GeV}$, we could also estimate the values of the parameters in the Higgs' mass at around 0.52 .

Acknowledgments

This research was funded by the National Foundation for Science and Technology Development (NAFOSTED) under Grant 103.01-2018.331.

References

[1] M. Singer, J. W. F. Valle, J. Schechter, Canonical Neutral Current Predictions From the Weak Electromagnetic Gauge Group $S U(3) \times \mathcal{U}(1)$, Phys. Rev. D, Vol. 22, No. 3, pp.738_1 - 738_19, 1980, https://doi.org/10.1103/PhysRevD.22.738.
[2] R. Foot, H. N. Long, T. A. Tran, $S U(3)_{L} \otimes U(1)_{N}$ and $S U(4)_{L} \otimes U(1)_{N}$ Gauge Models with Right-Handed Neutrinos, Phys. Rev. D, Vol. 50, No. 1, 1994, pp.34-38, https://doi.org/10.1103/PhysRevD.50.R34.
[3] F. Pisano, V. Pleitez, An $S U(3) \otimes U(1)$ Model for Electroweak Interactions,Phys. Rev. D, Vol. 46, No. 1, 1992, pp. 410-417, https://doi.org/10.1103/PhysRevD.46.410.
[4] P. H. Frampton, Chiral Dilepton Model and the Flavor Question, Phys. Rev. Lett, Vol. 69, No. 20, 1992, pp. 28892891, https://doi.org/10.1103/PhysRevLett.69.2889.
[5] R. Foot, O. F. Hernandez, F. Pisano, V. Pleitez, Lepton Masses in an $S U(3)_{L} \otimes U(1)_{N}$ Gauge Model, Phys. Rev. D, Vol. 47, No. 9, 1993, pp. 4158-4161, https://doi.org/10.1103/PhysRevD.47.4158.
[6] J. C. Montero, F. Pisano, V. Pleitez, Neutral Currents and Gim Mechanism in $S U(3)_{L} \times U(1)_{N}$ Models for Electroweak Interactions, Phys. Rev. D, Vol. 47, No. 7, 1993, pp. 2918-2929, https://doi.org/10.1103/PhysRevD.47.2918.
[7] H. N. Long, $S U(3)_{L} \otimes U(1)_{N}$ Model for Right-Handed Neutrino Neutral Currents,Phys. Rev. D, Vol. 54, No. 7, 1996, pp. 4691-4693, https://doi.org/10.1103/PhysRevD.54.4691.
[8] P. V. Dong, H. T. Hung, T. D. Tham, 3-3-1-1 Model for Dark Matter, Phys. Rev. D, Vol.87, No. 11, 2013, pp. 115003_1-115003_17, https://doi.org/10.1103/PhysRevD.87.115003.
[9] P. V. Dong, D. T. Huong, F. S. Queiroz, N. T. Thuy, Phenomenology of the 3-3-1-1 Model, Phys. Rev. D, Vol. 90,No. 7, 2014, pp. 075021_1-075021_35, https://doi.org/10.1103/PhysRevD.90.075021.
$[10]$ D. T. Huong, P. V. Dong, C. S. Kim, N. T. Thuy, Inflation and Leptogenesis In The3-3-1-1 Model, Phys. Rev. D, Vol.91, No. 5, 2015, pp. 055023_1-055023_19, https://doi.org/10.1103/PhysRevD.91.055023.
[11] P. V. Dong, Unifying the Electroweak and B-L Interactions, Phys. Rev. D, Vol. 92, No. 5, 2015, pp. 055026_1055026_15, https://doi.org/10.1103/PhysRevD.92.055026.
[12] P. V. Dong, D. T. Si, Discriminating the Minimal 3-3-1 Models, Phys. Rev. D, Vol. 90, No. 11, 2014, pp. 117703_1 -117703_4, https://doi.org/10.1103/PhysRevD.90.117703.
[13] P. V. Dong, D. T. Si, Kinetic Mixing Effect in the 3-3-1-1 Model, Phys. Rev. D, Vol. 93, No. 11, 2016, pp. 115003_1-115003_11, https://doi.org/10.1103/PhysRevD.93.115003.
[14] P. V. Dong, H. N. Long, $U(1)_{Q}$ Invariance and $S U(3)_{C} \otimes S U(3)_{L} \otimes U(1)_{X}$ Models with Beta Arbitrary, Eur. Phys. J. C, Vol.42, No. 8, 2005, pp. 325-329, https://doi.org/10.1140/epjc/s2005-02314-x.
[15] K. Sasaki, Effects of Dilepton Gauge Bosons on the Electroweak Parameters S, T and U, Phys. Lett. B, Vol. 308, No. 3,1993, pp. 297-303, https://doi.org/10.1016/0370-2693(93)91288-X.
[16] P. H. Frampton, M. Harada, Constraints from Precision Electroweak Data on Leptoquarks and Bileptons, Phys. Rev. D, Vol. 58, No. 9, 1998,pp. 095013_1 - 095013_27, https://doi.org/10.1103/PhysRevD.58.095013.
[17] H. N. Long, T. Inami, S, T, U Parameters in $S U(3)_{C} \otimes S U(3)_{L} \otimes U(1)$ Model with Right-Handed Neutrinos, Phys. Rev. D, Vol. 61, No. 7, 2000, p. 075002 (9 pages), https://doi.org/10.1103/PhysRevD.61.075002.
[18] M. Tanabashi et al. [Particle Data Group], Review of Particle Physics, Phys. Rev. D, Vol. 98, No. 3,pp. 030001_1 - 030001_1898 pages, 2018, https://doi.org/10.1103/PhysRevD.98.030001.
[19] M. Gell-Mann, P. Ramond, R. Slansky, Complex Spinors and Unified Theories, In Supergravity, edited by P. van Nieuwenhuizen and D. Z. Freedman, North Holland press, Amsterdam, 1979, pp. 315-321. [Published in: Conf.Proc.C 790927 (1979) 315-321].
[20] T. Yanagida, in Proceedings of the Workshop on the Unified Theory and the Baryon Number in the Universe, edited by O. Sawada and A. Sugamoto, KEK, Tsukuba, Japan, 1979, pp. 95-99.[Published in: Conf.Proc.C 7902131 (1979) 95-99].
[21] S. L. Glashow, The Future of Elementary Particle Physics, in Proceedings of the 1979 Cargèse Summer Institute on Quarks and Leptons, edited by M. Lévy, Plenum Press, New York, 1980, pp. 687-713.[Published in: NATO Sci. Ser. B 61 (1980) 687]
[22] R. N. Mohapatra, G. Senjanovié, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett, Vol. 44, No. 14, 1980, pp. 912_1-912_10, https://doi.org/10.1103/PhysRevLett.44.912.
[23] G. Aad et al. (ATLAS Collaboration), Observation of a New Particle in the Search for the Standard Model Higgs Boson with the ATLAS Detector at the LHC, Phys. Lett. B, Vol. 716,No. 1, 2012, pp. 1-29, https://doi.org/10.1016/ j.physletb.2012.08.020.
[24] S. Chatrchyan et al. (CMS Collaboration), Observation of a New Boson at a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B, Vol. 716, No. 1, 2012, pp. 30-61, https://doi.org/10.1016/ j.physletb.2012.08.021.

[^0]: *Corresponding author.
 Email address: thanhphong@ctu.edu.vn
 https//doi.org/ 10.25073/2588-1124/vnumap. 4553

